英文标题:
《Semi-analytic path integral solution of SABR and Heston equations:
  pricing Vanilla and Asian options》
---
作者:
Jan Kuklinski and Kevin Tyloo
---
最新提交年份:
2016
---
英文摘要:
  We discuss a semi-analytical method for solving SABR-type equations based on path integrals. In this approach, one set of variables is integrated analytically while the second set is integrated numerically via Monte-Carlo. This method, known in the literature as Conditional Monte-Carlo, leads to compact expressions functional on three correlated stochastic variables. The methodology is practical and efficient when solving Vanilla pricing in the SABR, Heston and Bates models with time depending parameters. Further, it can also be practically applied to pricing Asian options in the $\\beta=0$ SABR model and to other $\\beta=0$ type models. 
---
中文摘要:
我们讨论了一种基于路径积分求解SABR型方程的半解析方法。在这种方法中,一组变量通过解析积分,而第二组变量通过蒙特卡罗数值积分。这种方法在文献中被称为条件蒙特卡罗,可以得到三个相关随机变量的紧致泛函表达式。该方法在求解含时变参数的SABR、Heston和Bates模型中的一般定价时是实用有效的。此外,它还可以实际应用于$\\beta=0$SABR模型和其他$\\beta=0$类型模型中的亚洲期权定价。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Computational Finance        计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance        数量金融学
二级分类:Mathematical Finance        数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Quantitative Finance        数量金融学
二级分类:Pricing of Securities        证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
PDF下载:
-->