英文标题:
《Sparse Portfolio selection via Bayesian Multiple testing》
---
作者:
Sourish Das, Rituparna Sen
---
最新提交年份:
2020
---
英文摘要:
We presented Bayesian portfolio selection strategy, via the $k$ factor asset pricing model. If the market is information efficient, the proposed strategy will mimic the market; otherwise, the strategy will outperform the market. The strategy depends on the selection of a portfolio via Bayesian multiple testing methodologies. We present the \"discrete-mixture prior\" model and the \"hierarchical Bayes model with horseshoe prior.\" We define the Oracle set and prove that asymptotically the Bayes rule attains the risk of Bayes Oracle up to $O(1)$. Our proposed Bayes Oracle test guarantees statistical power by providing the upper bound of the type-II error. Simulation study indicates that the proposed Bayes oracle test is suitable for the efficient market with few stocks inefficiently priced. However, as the model becomes dense, i.e., the market is highly inefficient, one should not use the Bayes oracle test. The statistical power of the Bayes Oracle portfolio is uniformly better for the $k$-factor model ($k>1$) than the one factor CAPM. We present the empirical study, where we considered the 500 constituent stocks of S\\&P 500 from the New York Stock Exchange (NYSE), and S\\&P 500 index as the benchmark for thirteen years from the year 2006 to 2018. We showed the out-sample risk and return performance of the four different portfolio selection strategies and compared with the S\\&P 500 index as the benchmark market index. Empirical results indicate that it is possible to propose a strategy which can outperform the market.
---
中文摘要:
我们通过k$要素资产定价模型提出了贝叶斯投资组合选择策略。如果市场是信息有效的,那么建议的策略将模仿市场;否则,该策略的表现将优于市场。该策略取决于通过贝叶斯多重测试方法选择投资组合。我们提出了“离散混合先验”模型和“具有马蹄先验的层次贝叶斯模型”我们定义了Oracle集,并证明了Bayes规则渐近地使Bayes-Oracle的风险达到$O(1)$。我们提出的Bayes-Oracle测试通过提供II型错误的上界来保证统计能力。仿真研究表明,所提出的贝叶斯-甲骨文检验方法适用于股票价格低的有效市场。然而,随着模型变得密集,即市场效率非常低,人们不应该使用Bayes-oracle测试。Bayes-Oracle投资组合的统计能力对于k$因子模型(k>1$)而言,一致优于单因子CAPM。我们提出了实证研究,其中我们考虑了纽约证券交易所(NYSE)标准普尔500指数的500支成分股,并将标准普尔500指数作为2006年至2018年13年的基准。我们展示了四种不同投资组合选择策略的样本外风险和回报表现,并与作为基准市场指数的标准普尔500指数进行了比较。实证结果表明,有可能提出一种优于市场的策略。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->