英文标题:
《Improving the Economic Complexity Index》
---
作者:
Saleh Albeaik, Mary Kaltenberg, Mansour Alsaleh, Cesar A. Hidalgo
---
最新提交年份:
2017
---
英文摘要:
How much knowledge is there in an economy? In recent years, data on the mix of products that countries export has been used to construct measures of economic complexity that estimate the knowledge available in an economy and predict future economic growth. Here we introduce a new and simpler metric of economic complexity (ECI+) that measures the total exports of an economy corrected by how difficult it is to export each product. We use data from 1973 to 2013 to compare the ability of ECI+, the Economic Complexity Index (ECI), and Fitness complexity, to predict future economic growth using 5, 10, and 20-year panels in a pooled OLS, a random effects model, and a fixed effects model. We find that ECI+ outperforms ECI and Fitness in its ability to predict economic growth and in the consistency of its estimators across most econometric specifications. On average, one standard deviation increase in ECI+ is associated with an increase in annualized growth of about 4% to 5%. We then combine ECI+ with measures of physical capital, human capital, and institutions, to find a robust model of economic growth. The ability of ECI+ to predict growth, and the value of its coefficient, is robust to these controls. Also, we find that human capital, political stability, and control of corruption; are positively associated with future economic growth, and that income is negatively associated with growth, in agreement with the traditional growth literature. Finally, we use ECI+ to generate economic growth predictions for the next 20 years and compare these predictions with the ones obtained using ECI and Fitness. These findings improve the methods available to estimate the knowledge intensity of economies and predict future economic growth.
---
中文摘要:
一个经济体有多少知识?近年来,各国出口的产品组合数据被用于构建经济复杂性的衡量指标,以估计经济体中可用的知识并预测未来的经济增长。在这里,我们引入了一个新的、更简单的经济复杂性指标(ECI+),该指标衡量了一个经济体的总出口量,并根据每种产品的出口难度进行了修正。我们使用1973年至2013年的数据,比较ECI+、经济复杂性指数(ECI)和适应度复杂性的能力,以使用混合OLS、随机效应模型和固定效应模型中的5年、10年和20年面板预测未来经济增长。我们发现,ECI+在预测经济增长的能力以及在大多数计量经济学规范中其估计量的一致性方面优于ECI和适应度。平均而言,ECI+的一个标准差增加与约4%-5%的年化增长相关。然后,我们将ECI+与实物资本、人力资本和制度的度量相结合,以找到一个稳健的经济增长模型。ECI+预测生长的能力及其系数的值对这些控制具有鲁棒性。此外,我们还发现,人力资本、政治稳定和腐败控制;与未来经济增长正相关,收入与增长负相关,与传统增长文献一致。最后,我们使用ECI+生成未来20年的经济增长预测,并将这些预测与使用ECI和适应度获得的预测进行比较。这些发现改进了估算经济体知识强度和预测未来经济增长的方法。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
PDF下载:
-->