英文标题:
《Fake News in Social Networks》
---
作者:
Christoph Aymanns and Jakob Foerster and Co-Pierre Georg
---
最新提交年份:
2017
---
英文摘要:
We model the spread of news as a social learning game on a network. Agents can either endorse or oppose a claim made in a piece of news, which itself may be either true or false. Agents base their decision on a private signal and their neighbors\' past actions. Given these inputs, agents follow strategies derived via multi-agent deep reinforcement learning and receive utility from acting in accordance with the veracity of claims. Our framework yields strategies with agent utility close to a theoretical, Bayes optimal benchmark, while remaining flexible to model re-specification. Optimized strategies allow agents to correctly identify most false claims, when all agents receive unbiased private signals. However, an adversary\'s attempt to spread fake news by targeting a subset of agents with a biased private signal can be successful. Even more so when the adversary has information about agents\' network position or private signal. When agents are aware of the presence of an adversary they re-optimize their strategies in the training stage and the adversary\'s attack is less effective. Hence, exposing agents to the possibility of fake news can be an effective way to curtail the spread of fake news in social networks. Our results also highlight that information about the users\' private beliefs and their social network structure can be extremely valuable to adversaries and should be well protected.
---
中文摘要:
我们将新闻传播建模为网络上的社交学习游戏。代理人可以支持或反对一条新闻中的声明,这条新闻本身可能是真的,也可能是假的。特工们的决定基于一个私人信号和他们邻居过去的行为。给定这些输入,代理遵循通过多代理深度强化学习得出的策略,并根据声明的准确性从行动中获得效用。我们的框架产生的策略与代理效用接近于理论上的贝叶斯最优基准,同时保持对模型重新规范的灵活性。优化的策略允许代理在所有代理接收到无偏的私有信号时正确识别大多数虚假声明。然而,对手试图通过使用有偏见的私人信号将一部分代理作为目标来传播假新闻,可能会成功。当对手掌握有关代理的网络位置或专用信号的信息时,情况更是如此。当代理意识到对手的存在时,他们会在训练阶段重新优化其策略,而对手的攻击效果较差。因此,让代理接触到虚假新闻的可能性可以有效地遏制虚假新闻在社交网络中的传播。我们的研究结果还强调,关于用户个人信仰和社交网络结构的信息对对手来说非常有价值,应该得到很好的保护。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Multiagent Systems 多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
PDF下载:
-->