英文标题:
《Numerical analysis on quadratic hedging strategies for normal inverse
Gaussian models》
---
作者:
Takuji Arai, Yuto Imai and Ryo Nakashima
---
最新提交年份:
2018
---
英文摘要:
The authors aim to develop numerical schemes of the two representative quadratic hedging strategies: locally risk minimizing and mean-variance hedging strategies, for models whose asset price process is given by the exponential of a normal inverse Gaussian process, using the results of Arai et al. \\cite{AIS}, and Arai and Imai. Here normal inverse Gaussian process is a framework of L\\\'evy processes frequently appeared in financial literature. In addition, some numerical results are also introduced.
---
中文摘要:
作者旨在利用Arai et al.{AIS}和Arai and Imai的结果,针对资产价格过程由正态逆高斯过程的指数给出的模型,开发两种具有代表性的二次套期保值策略的数值方案:局部风险最小化和均值方差套期保值策略。这里,正态逆高斯过程是金融文献中经常出现的列维过程的一个框架。此外,还介绍了一些数值结果。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->