英文标题:
《Hedging and Pricing European-type, Early-Exercise and Discrete Barrier
Options using Algorithm for the Convolution of Legendre Series》
---
作者:
Tat Lung Chan and Nicholas Hale
---
最新提交年份:
2019
---
英文摘要:
This paper applies an algorithm for the convolution of compactly supported Legendre series (the CONLeg method) (cf. Hale and Townsend 2014a), to pricing/hedging European-type, early-exercise and discrete-monitored barrier options under a Levy process. The paper employs Chebfun (cf. Trefethen et al. 2014) in computational finance and provides a quadrature-free approach by applying the Chebyshev series in financial modelling. A significant advantage of using the CONLeg method is to formulate option pricing and option Greek curves rather than individual prices/values. Moreover, the CONLeg method can yield high accuracy in option pricing and hedging when the risk-free smooth probability density function (PDF) is smooth/non-smooth. Finally, we show that our method can accurately price/hedge options deep in/out of the money and with very long/short maturities. Compared with existing techniques, the CONLeg method performs either favourably or comparably in numerical experiments.
---
中文摘要:
本文将紧支撑Legendre级数的卷积算法(CONLeg方法)(参见Hale和Townsend 2014a)应用于征税过程下的欧式、早期行使和离散监控障碍期权的定价/对冲。本文将Chebfun(参见Trefethen et al.2014)应用于计算金融,并通过在金融建模中应用切比雪夫级数提供了一种无需求积的方法。使用CONLeg方法的一个显著优点是,可以制定期权定价和期权曲线,而不是单独的价格/价值。此外,当无风险平滑概率密度函数(PDF)为光滑/非光滑时,CONLeg方法可以在期权定价和套期保值中获得较高的精度。最后,我们证明了我们的方法能够准确地定价/对冲资金中/外、期限很长/很短的期权。与现有技术相比,CONLeg方法在数值实验中表现良好或相当。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Numerical Analysis 数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
---
PDF下载:
-->