英文标题:
《Calibration for Weak Variance-Alpha-Gamma Processes》
---
作者:
Boris Buchmann, Kevin W. Lu, Dilip B. Madan
---
最新提交年份:
2018
---
英文摘要:
The weak variance-alpha-gamma process is a multivariate L\\\'evy process constructed by weakly subordinating Brownian motion, possibly with correlated components with an alpha-gamma subordinator. It generalises the variance-alpha-gamma process of Semeraro constructed by traditional subordination. We compare three calibration methods for the weak variance-alpha-gamma process, method of moments, maximum likelihood estimation (MLE) and digital moment estimation (DME). We derive a condition for Fourier invertibility needed to apply MLE and show in our simulations that MLE produces a better fit when this condition holds, while DME produces a better fit when it is violated. We also find that the weak variance-alpha-gamma process exhibits a wider range of dependence and produces a significantly better fit than the variance-alpha-gamma process on an S&P500-FTSE100 data set, and that DME produces the best fit in this situation.
---
中文摘要:
弱方差α-伽马过程是一个由弱从属布朗运动构造的多元Levy过程,可能具有α-伽马从属的相关分量。它推广了由传统隶属关系构造的塞梅拉罗方差α-γ过程。我们比较了弱方差α-γ过程、矩量法、最大似然估计(MLE)和数字矩估计(DME)的三种校准方法。我们推导了应用极大似然估计所需的傅立叶可逆性条件,并在模拟中表明,当该条件成立时,极大似然估计会产生更好的拟合,而当违反该条件时,二甲醚会产生更好的拟合。我们还发现,在S&P500-FTSE100数据集上,弱方差α-γ过程表现出更广泛的依赖性,并产生了比方差α-γ过程更好的拟合,并且DME在这种情况下产生了最佳拟合。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->