英文标题:
《Strongly Consistent Multivariate Conditional Risk Measures》
---
作者:
Hannes Hoffmann, Thilo Meyer-Brandis, Gregor Svindland
---
最新提交年份:
2016
---
英文摘要:
We consider families of strongly consistent multivariate conditional risk measures. We show that under strong consistency these families admit a decomposition into a conditional aggregation function and a univariate conditional risk measure as introduced Hoffmann et al. (2016). Further, in analogy to the univariate case in F\\\"ollmer (2014), we prove that under law-invariance strong consistency implies that multivariate conditional risk measures are necessarily multivariate conditional certainty equivalents.
---
中文摘要:
我们考虑强一致的多元条件风险测度族。我们表明,在强一致性条件下,这些族允许分解为条件聚集函数和一元条件风险度量,如Hoffmann et al.(2016)所述。此外,与F“ollmer(2014)中的单变量情况类似,我们证明了在法律不变性下,强一致性意味着多元条件风险度量必然是多元条件确定性等价物。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->