英文标题:
《High-order compact finite difference scheme for option pricing in
stochastic volatility with contemporaneous jump models》
---
作者:
Bertram D\\\"uring, Alexander Pitkin
---
最新提交年份:
2019
---
英文摘要:
We extend the scheme developed in B. D\\\"uring, A. Pitkin, \"High-order compact finite difference scheme for option pricing in stochastic volatility jump models\", 2019, to the so-called stochastic volatility with contemporaneous jumps (SVCJ) model, derived by Duffie, Pan and Singleton. The performance of the scheme is assessed through a number of numerical experiments, using comparisons against a standard second-order central difference scheme. We observe that the new high-order compact scheme achieves fourth order convergence and discuss the effects on efficiency and computation time.
---
中文摘要:
我们将B.D \\“uring,A.Pitkin,“随机波动率跳跃模型中期权定价的高阶紧致有限差分格式”(2019)中开发的方案扩展到所谓的随机波动率同步跳跃(SVCJ)模型,由Duffie、Pan和Singleton推导。通过与标准二阶中心差分格式的比较,通过大量的数值实验评估了该格式的性能。我们观察到新的高阶紧致格式实现了四阶收敛,并讨论了它对效率和计算时间的影响。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->