英文标题:
《Static and semi-static hedging as contrarian or conformist bets》
---
作者:
Svetlana Boyarchenko and Sergei Levendorskii
---
最新提交年份:
2019
---
英文摘要:
In this paper, we argue that, once the costs of maintaining the hedging portfolio are properly taken into account, semi-static portfolios should more properly be thought of as separate classes of derivatives, with non-trivial, model-dependent payoff structures. We derive new integral representations for payoffs of exotic European options in terms of payoffs of vanillas, different from Carr-Madan representation, and suggest approximations of the idealized static hedging/replicating portfolio using vanillas available in the market. We study the dependence of the hedging error on a model used for pricing and show that the variance of the hedging errors of static hedging portfolios can be sizably larger than the errors of variance-minimizing portfolios. We explain why the exact semi-static hedging of barrier options is impossible for processes with jumps, and derive general formulas for variance-minimizing semi-static portfolio. We show that hedging using vanillas only leads to larger errors than hedging using vanillas and first touch digitals. In all cases, efficient calculations of the weights of the hedging portfolios are in the dual space using new efficient numerical methods for calculation of the Wiener-Hopf factors and Laplace-Fourier inversion.
---
中文摘要:
在本文中,我们认为,一旦适当考虑了维持套期保值投资组合的成本,半静态投资组合应更适当地被视为独立的衍生工具类别,具有非平凡的、依赖于模型的回报结构。我们根据vanillas的收益推导出奇异欧洲期权收益的新积分表示,不同于Carr-Madan表示,并建议使用市场上可用的vanillas近似理想化静态对冲/复制投资组合。我们研究了套期保值误差对定价模型的依赖性,并表明静态套期保值组合的套期保值误差方差可以大大大于方差最小化组合的误差。我们解释了为什么障碍期权的精确半静态对冲对于跳跃过程是不可能的,并推导了方差最小化半静态投资组合的一般公式。我们表明,使用vanillas进行套期保值比使用vanillas和first touch digitals进行套期保值只会导致更大的错误。在所有情况下,对冲组合权重的有效计算都是在对偶空间中进行的,使用新的有效数值方法计算维纳-霍普夫因子和拉普拉斯-傅立叶反演。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->