英文标题:
《Machine learning with kernels for portfolio valuation and risk
  management》
---
作者:
Lotfi Boudabsa, Damir Filipovic
---
最新提交年份:
2021
---
英文摘要:
  We introduce a simulation method for dynamic portfolio valuation and risk management building on machine learning with kernels. We learn the dynamic value process of a portfolio from a finite sample of its cumulative cash flow. The learned value process is given in closed form thanks to a suitable choice of the kernel. We show asymptotic consistency and derive finite sample error bounds under conditions that are suitable for finance applications. Numerical experiments show good results in large dimensions for a moderate training sample size. 
---
中文摘要:
我们介绍了一种基于核函数
机器学习的动态投资组合估值和风险管理模拟方法。我们从累积现金流的有限样本中学习投资组合的动态价值过程。由于选择了合适的内核,学习值过程以闭合形式给出。在适合金融应用的条件下,我们证明了渐近一致性并推导了有限样本误差界。数值实验表明,在中等训练样本量的情况下,在大维度上取得了良好的效果。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Computational Finance        计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->