英文标题:
《Smart network based portfolios》
---
作者:
Gian Paolo Clemente and Rosanna Grassi and Asmerilda Hitaj
---
最新提交年份:
2019
---
英文摘要:
In this article we deal with the problem of portfolio allocation by enhancing network theory tools. We use the dependence structure of the correlations network in constructing some well-known risk-based models in which the estimation of correlation matrix is a building block in the portfolio optimization. We formulate and solve all these portfolio allocation problems using both the standard approach and the network-based approach. Moreover, in constructing the network-based portfolios we propose the use of two different estimators for the covariance matrix: the sample estimator and the shrinkage toward constant correlation one. All the strategies under analysis are implemented on two high-dimensional portfolios having different characteristics, covering the period from January $2001$ to December $2017$. We find that the network-based portfolio consistently better performs and has lower risk compared to the corresponding standard portfolio in an out-of-sample perspective.
---
中文摘要:
在本文中,我们通过增强网络理论工具来处理投资组合分配问题。我们利用相关网络的依赖结构构建了一些著名的基于风险的模型,其中相关矩阵的估计是投资组合优化的一个组成部分。我们使用标准方法和基于网络的方法来制定和解决所有这些投资组合分配问题。此外,在构建基于网络的投资组合时,我们建议对协方差矩阵使用两种不同的估计量:样本估计量和向常相关收缩量。所分析的所有策略都是在两个具有不同特征的高维投资组合上实施的,涵盖2001年1月至2017年12月期间。我们发现,从样本外的角度来看,与相应的标准投资组合相比,基于网络的投资组合始终表现更好,风险更低。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
PDF下载:
-->