英文标题:
《Improved Forecasting of Cryptocurrency Price using Social Signals》
---
作者:
Maria Glenski, Tim Weninger, and Svitlana Volkova
---
最新提交年份:
2019
---
英文摘要:
  Social media signals have been successfully used to develop large-scale predictive and anticipatory analytics. For example, forecasting stock market prices and influenza outbreaks. Recently, social data has been explored to forecast price fluctuations of cryptocurrencies, which are a novel disruptive technology with significant political and economic implications. In this paper we leverage and contrast the predictive power of social signals, specifically user behavior and communication patterns, from multiple social platforms GitHub and Reddit to forecast prices for three cyptocurrencies with high developer and community interest - Bitcoin, Ethereum, and Monero. We evaluate the performance of neural network models that rely on long short-term memory units (LSTMs) trained on historical price data and social data against price only LSTMs and baseline autoregressive integrated moving average (ARIMA) models, commonly used to predict stock prices. Our results not only demonstrate that social signals reduce error when forecasting daily coin price, but also show that the language used in comments within the official communities on Reddit (r/Bitcoin, r/Ethereum, and r/Monero) are the best predictors overall. We observe that models are more accurate in forecasting price one day ahead for Bitcoin (4% root mean squared percent error) compared to Ethereum (7%) and Monero (8%). 
---
中文摘要:
社交媒体信号已成功用于开发大规模预测和预测分析。例如,预测股市价格和流感爆发。最近,人们利用社会数据预测加密货币的价格波动,这是一种具有重大政治和经济影响的新型破坏性技术。在本文中,我们利用并对比了来自多个社交平台GitHub和Reddit的社交信号(特别是用户行为和通信模式)的预测能力,以预测三种具有高开发者和社区兴趣的Cyptocurrence的价格——比特币、以太坊和Monero。我们评估了基于历史价格数据和社会数据训练的长-短期记忆单元(LSTM)的
神经网络模型与仅价格LSTM和通常用于预测股价的基线自回归综合移动平均(ARIMA)模型的性能。我们的结果不仅表明,社交信号可以减少预测每日硬币价格时的错误,而且还表明,官方社区对Reddit的评论中使用的语言(r/比特币、r/以太坊和r/Monero)总体上是最好的预测者。我们观察到,与以太坊(7%)和Monero(8%)相比,模型在预测比特币未来一天的价格方面更准确(均方根误差为4%)。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Social and Information Networks        社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->