全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
8932 6
2008-02-28
<p>烦劳高手指点一下,建立面板数据的probit模型在固定效应和随机效应的选择上,是否与普通的面板数据模型一样?仍然应用Hausman检验可以吗?</p>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2008-2-28 16:24:00
面板里面probit是不能坐固定效应的啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-6-18 22:02:35
请问高手 面板里面怎么做Probit估计呢?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-6-19 07:28:41
07051029 发表于 2009-6-18 22:02
请问高手 面板里面怎么做Probit估计呢?
xtprobit


help xtprobit                                  dialog:  xtprobit               
                                             also see:  xtprobit postestimation
-------------------------------------------------------------------------------
Title
    [XT] xtprobit -- Random-effects and population-averaged probit models

Syntax
    Random-effects (RE) model
        xtprobit depvar [indepvars] [if] [in] [weight] [, re RE_options]

    Population-averaged (PA) model
        xtprobit depvar [indepvars] [if] [in] [weight] , pa [PA_options]

    RE_options                   description
    -------------------------------------------------------------------------
    Model
      noconstant                 suppress constant term
      re                         use random-effects estimator; the default
      offset(varname)            include varname in model with coefficient
                                   constrained to 1
      constraints(constraints)   apply specified linear constraints
      collinear                  keep collinear variables
    SE
      vce(vcetype)               vcetype may be oim, bootstrap, or jackknife
    Reporting
      level(#)                   set confidence level; default is level(95)
      noskip                     perform likelihood-ratio test
    Int opts (RE)
      intmethod(intmethod)       integration method; intmethod may be
                                   mvaghermite, aghermite, or ghermite;
                                   default is intmethod(mvaghermite)
      intpoints(#)               use # quadrature points; default is
                                   intpoints(12)
    Max options
      maximize_options           control the maximization process; seldom
                                   used
    -------------------------------------------------------------------------
    PA_options                   description
    -------------------------------------------------------------------------
    Model
      noconstant                 suppress constant term
      pa                         use population-averaged estimator
      offset(varname)            include varname in model with coefficient
                                   constrained to 1
    Correlation
      corr(correlation)          within-group correlation structure
      force                      estimate even if observations unequally
                                   spaced in time
    SE/Robust
      vce(vcetype)               vcetype may be conventional, robust,
                                   bootstrap, or jackknife
      nmp                        use divisor N-P instead of the default N
      scale(parm)                override the default scale parameter; parm
                                   may be x2, dev, phi, or #
    Reporting
      level(#)                   set confidence level; default is level(95)
    Opt options
      optimize_options           control the optimization process; seldom
                                   used
    -------------------------------------------------------------------------
    correlation              description
    -------------------------------------------------------------------------
    exchangeable             exchangeable
    independent              exchangeable
    unstructured             unstructured
    fixed matname            user-specified
    ar #                     autoregressive of order #
    stationary #             stationary of order #
    nonstationary #          nonstationary of order #
    -------------------------------------------------------------------------
    A panel variable must be specified. For xtprobit, pa, correlation
      structures other than exchangeable and independent require that a time
      variable also be specified.  Use xtset.
    depvar and indepvars may contain time-series operators; see tsvarlist.
    by, statsby, and xi are allowed; see prefix.
    iweights, fweights, and pweights are allowed for the population-averaged
      model, and iweights are allowed in the random-effects model; see
      weight.  Weights must be constant within panel.
    See [XT] xtprobit postestimation for features available after estimation.

Description
    xtprobit fits random-effects and population-averaged probit models.
    There is no command for a conditional fixed-effects model, as there does
    not exist a sufficient statistic allowing the fixed effects to be
    conditioned out of the likelihood.  Unconditional fixed-effects probit
    models may be fitted with probit command with indicator variables for the
    panels.  The appropriate indicator variables can be generated using
    tabulate or xi.  However, unconditional fixed-effects estimates are
    biased.
    By default, the population-averaged model is an equal-correlation model;
    xtprobit assumes corr(exchangeable).  See [XT] xtgee for information on
    how to fit other population-averaged models.
    See logistic estimation commands for a list of related estimation
    commands.

Options for RE model
        +-------+
    ----+ Model +------------------------------------------------------------
    noconstant; see [XT] estimation options.
    re requests the random-effects estimator.  re is the default if neither
        re not pa is specified.
    offset(varname), constraints(constraints), collinear; see [XT] estimation
        options.
        +----+
    ----+ SE +---------------------------------------------------------------
    vce(vcetype) specifies the type of standard error reported, which
        includes types that are derived from asymptotic theory and that use
        bootstrap or jackknife methods; see [XT] vce_options.
        +-----------+
    ----+ Reporting +--------------------------------------------------------
    level(#), noskip; see [XT] estimation options.
        +---------------+
    ----+ Int opts (RE) +----------------------------------------------------
    intmethod(intmethod), intpoints(#); see [XT] estimation options.
        +-------------+
    ----+ Max options +------------------------------------------------------
    maximize_options: difficult, technique(algorithm_spec), iterate(#),
        [no]log, trace, gradient, showstep, hessian, shownrtolerance,
        tolerance(#), ltolerance(#), gtolerance(#), nrtolerance(#),
        nonrtolerance, from(init_specs); see [R] maximize.  Some of these
        options are not available if intmethod(ghermite) is specified.  These
        options are seldom used.

Options for PA model
        +-------+
    ----+ Model +------------------------------------------------------------
    noconstant; see [XT] estimation options.
    pa requests the population-averaged estimator.
    offset(varname); see [XT] estimation options.
        +-------------+
    ----+ Correlation +------------------------------------------------------
    corr(correlation), force; see [XT] estimation options.
        +-----------+
    ----+ SE/Robust +--------------------------------------------------------
    vce(vcetype) specifies the type of standard error reported, which
        includes types that are derived from asymptotic theory, that are
        robust to some kinds of misspecification, and that use bootstrap or
        jackknife methods; see [XT] vce_options.
        vce(conventional), the default, uses the conventionally derived
        variance estimator for generalized least-squares regression.
    nmp, scale(x2|dev|phi|#); see [XT] vce_options.
        +-----------+
    ----+ Reporting +--------------------------------------------------------
    level(#); see [XT] estimation options.
        +-------------+
    ----+ Opt options +------------------------------------------------------
    optimize_options control the iterative optimization process.  These
        options are seldom used.
        iterate(#) specifies the maximum number of iterations.  When the
        number of iterations equals #, the optimization stops and presents
        the current results, even if the convergence tolerance has not been
        reached.  The default value of iterate() is 100.
        tolerance(#) specifies the tolerance for the coefficient vector.
        When the relative change in the coefficient vector from one iteration
        to the next is less than or equal to #, the optimization process is
        stopped.  tolerance(1e-6) is the default.
        nolog suppress the display of the iteration log.
        trace specifies that the current estimates should be printed at each
        iteration.

Technical note
    The random-effects model is calculated using quadrature, which is an
    approximation whose accuracy depends partially on the number of
    integration points used.  We can use the quadchk command to see if
    changing the number of integration points affects the results.  If the
    results change, the quadrature approximation is not accurate given the
    number of integration points.  Try increasing the number of integration
    points using the intpoints() option and again run quadchk.  Do not
    attempt to interpret the results of estimates when the coefficients
    reported by quadchk differ substantially.  See [XT] quadchk for details
    and [XT] xtprobit for an example.
    Because the xtprobit, re likelihood function is calculated by Gauss
    Hermite quadrature, on large problems, the computations can be slow.
    Computation time is roughly proportional to the number of points used for
    the quadrature.

Examples
    Setup
        . webuse union
    Random-effects model
        . xtprobit union age grade not_smsa south southXt
    Equal-correlation population-averaged model
        . xtprobit union age grade not_smsa south southXt, pa
    Equal-correlation population-averaged model with robust variance
        . xtprobit union age grade not_smsa south southXt, pa vce(robust)

Saved results
    xtprobit, re saves the following in e():
    Scalars   
      e(N)           number of observations
      e(N_g)         number of groups
      e(N_cd)        number of completely determined obs.
      e(df_m)        model degrees of freedom
      e(ll)          log likelihood
      e(ll_0)        log likelihood, constant-only model
      e(ll_0)        log likelihood, comparison model
      e(g_max)       largest group size
      e(g_min)       smallest group size
      e(g_avg)       average group size
      e(chi2)        chi-squared
      e(chi2_c)      chi-squared for comparison test
      e(rho)         rho
      e(sigma_u)     panel-level standard deviation
      e(n_quad)      number of quadrature points
      e(k)           number of parameters
      e(k_eq)        number of equations
      e(k_eq_model)  number of equations in model Wald test
      e(k_dv)        number of dependent variables
      e(p)           significance
      e(rank)        rank of e(V)
      e(rank0)       rank of e(V) for constant-only model
      e(ic)          number of iterations
      e(rc)          return code
      e(converged)   1 if converged, 0 otherwise
    Macros   
      e(cmd)         xtprobit
      e(cmdline)     command as typed
      e(depvar)      name of dependent variable
      e(ivar)        variable denoting groups
      e(wtype)       weight type
      e(wexp)        weight expression
      e(title)       title in estimation output
      e(offset1)     offset
      e(chi2type)    Wald or LR; type of model chi-squared test
      e(chi2_ct)     Wald or LR; type of model chi-squared test corresponding
                       to e(chi2_c)
      e(intmethod)   integration method
      e(distrib)     Gaussian; the distribution of the random effect
      e(vce)         vcetype specified in vce()
      e(vcetype)     title used to label Std. Err.
      e(opt)         type of optimization
      e(ml_method)   type of ml method
      e(user)        name of likelihood-evaluator program
      e(technique)   maximization technique
      e(crittype)    optimization criterion
      e(properties)  b V
      e(predict)     program used to implement predict
    Matrices  
      e(b)           coefficient vector
      e(V)           variance-covariance matrix of the estimators
      e(ilog)        iteration log
      e(gradient)    gradient vector
    Functions
      e(sample)      marks estimation sample
    xtprobit, pa saves the following in e():
    Scalars   
      e(N)           number of observations
      e(N_g)         number of groups
      e(df_m)        model degrees of freedom
      e(df_pear)     degrees of freedom from Pearson chi-squared
      e(g_max)       largest group size
      e(g_min)       smallest group size
      e(g_avg)       average group size
      e(chi2)        chi-squared
      e(chi2_dev)    chi-squared test of deviance
      e(chi2_dis)    chi-squared test of deviance dispersion
      e(deviance)    deviance
      e(dispers)     deviance dispersion
      e(tol)         target tolerance
      e(dif)         achieved tolerance
      e(phi)         scale parameter
      e(rc)          return code
    Macros   
      e(cmd)         xtgee
      e(cmd2)        xtprobit
      e(cmdline)     command as typed
      e(wtype)       weight type
      e(wexp)        weight expression
      e(title)       title in estimation output
      e(depvar)      name of dependent variable
      e(family)      binomial
      e(link)        probit; link function
      e(corr)        correlation structure
      e(crittype)    optimization criterion
      e(scale)       x2, dev, phi, or #; scale parameter
      e(ivar)        variable denoting groups
      e(vce)         vcetype specified in vce()
      e(vcetype)     title used to label Std. Err.
      e(chi2type)    Wald; type of model chi-squared test
      e(offset)      offset
      e(properties)  b V
      e(predict)     program used to implement predict
    Matrices  
      e(b)           coefficient vector
      e(V)           variance-covariance matrix of the estimators
      e(R)           estimated working correlation matrix
    Functions
      e(sample)      marks estimation sample

Also see
    Manual:  [XT] xtprobit
    Online:  [XT] xtprobit postestimation;
             [XT] quadchk, [XT] xtcloglog, [XT] xtgee, [XT] xtlogit, [R]
             constraint, [R] probit
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-8-28 00:47:30
可是如果我在模型中加入哑变量进行回归呢,那不是可以了吗
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-6-29 22:21:21
蓝色 发表于 2008-2-28 16:24
面板里面probit是不能坐固定效应的啊
您好!想请问您关于面板数据二元选择模型,您说xtlogit不能做固定效应,请问哪一个二元选择模型的命令可以做固定效应模型?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群