金融网络及传染对金融的影响(二)巴曙松08月16日 06:30
分类 : 财经
摘要 : 本文主要介绍目前利用金融网络解决金融传染问题的相关研究方法和研究成果。文章在简单回顾了金融网络的结构特征、描述性指标及几大典型结构之后,从微观角度分析了最优金融网络所具有的一些共同特征,同时从宏观角度分析现实金融网络的拓扑结构,研究了网络结构在金融传染过程中所起到的作用,并基于此从金融网络的角度提出了提高金融体系稳定性的相关措施,为预防危机的传染提供了政策参考。本篇为报告的第二部分,接上篇关于金融结构及传染特征的概述,本篇主要讲述了金融网络的最优微观特征的几种研究方法以及最优的宏观金融结构,最后就所得结果提出金融结构领域亟需解决的几个难题。

三、金融网络的最优微观特征
目前,学者们在对金融网络的研究中,一方面从理论入手,研究具有什么微观特征的金融网络具有较高的稳定性;另一方面则从实际入手,研究现实中的金融网络具有什么样的微观特征和宏观结构,从而结合理论研究的结果对现实金融网络的稳定性实现判断。
关于金融网络最优微观结构的研究,主要是运用风险管理、复杂网络、网络动态学等领域的知识,并结合金融传染发生的机制、市场参与者的博弈决策行为等,定性或者定量地得出最优的金融网络应具有哪些重要的微观特征。该领域的早期研究主要考虑的是外部冲击的发生机制,并且研究主体多为银行系统;而随着复杂网络理论知识在统计物理学、生态学、社会学等学科应用的日趋成熟,许多学者开始借助于复杂网络来研究,研究主体也逐渐扩大到其他金融系统。近年来,对于金融网络的研究热情逐渐高涨,网络动态学、统计学等作为研究工具均从不同的角度对最优金融网络的微观结构进行了深入的分析,得到了相同或相似的研究结果。
1. 基于外部冲击发生机制的研究方法
由于外部冲击主要通过金融机构之间的连接而传导风险,因此,基于外部冲击的发生机制进行的研究多关注的是银行系统内各银行间的连接方式,以及连接的紧密程度。Allen和Gale于2000年发表的文章是该方面研究的基石。他们基于Diamond和Dybvig所建立的D-D模型,假设(完全信息条件下)流动性冲击来自存款者取款时间的不确定性,通过一个包括四个银行的模型证明了传染的蔓延主要取决于银行间的连接类型。当网络是完全连接的(如图表3),即每个银行都与其他银行连接在一起,使得某个银行的负债几乎完全均匀地分布在其他银行时,冲击的效果会被很好地淡化。然而,当网络是不完全连接的(如图表4),即每个银行只和一部分银行有负债关系,系统会变得较脆弱。从图表3可见,Allen和Gale提出的“完全连接”的网络正是拥有四个节点的规则网络。

“完全连接网络”的提出,很好地解决了“怎样的连接方式最优”这个问题;而“怎样的连接紧密程度最优”,则由Freixas等人率先给出答案,他们的研究同样基于外部冲击的发生机制。
Freixas等人的研究模型与Allen相似,但是他们假设流动性冲击并不来自于存款者取款时间的不确定性,而是来自于存款者取款地点的不确定性。他们认为高度连接的银行间市场,虽然降低了持有流动性资产的成本,但同时也产生了低效率和不稳定性:虽然银行间市场提供的流动性保险可以帮助银行抵消债务,但是这种系统稳定性是以这个资不抵债的银行继续运营为代价,这破坏了市场法则,最终系统很有可能因承受了过多的不良债务而崩溃。因此,过高的连接程度损害了系统的稳定性,最优金融网络需要适当偏大的最短路径长度。
同样是在D-D模型的基础上,Brusco和Castiglionesi建立一个包括四个银行的模型,他们的研究支持了Freixas的结论:银行间更紧密的连接会增加传染的风险,这是因为银行间互助系统所提供的后盾支持可能会使得某些银行做出更鲁莽的投资,从而增大系统风险;并且,如果连接过于紧密的话,某家银行的破产会导致传染的范围变广。
2. 基于复杂网络的研究方法
复杂网络理论在2000年左右逐渐成熟,其应用领域也从物理学、信息学逐渐扩大到生态学、社会学等多个学科。通过复杂网络理论对金融网络结构进行分析,尽管不能做出对金融机构行为的动态分析,但是它可以反映出金融网络的构建过程,并能与现实世界的网络相匹配,具有非常重要的现实指导作用。该领域具有代表性的是Gai和Kapadia于2010年所做出的研究工作。
Gai和Kapadia借鉴Strogatz以及Newman研究复杂网络的数学方法,通过模拟金融网络的形成过程而建立了一个能分析传染效应、并适用于现实世界中不同类型金融网络的模型。他们的分析结果与Brusco和Freixas等人得出的结果一样,即最短路径长度应适当偏长。他们认为,连接程度和风险分担程度越高,传染的概率越低;但一旦发生传染,影响范围将更广,从而极大地损害系统稳定性。在设计最优网络结构时,对连接程度和风险分担程度的选择,实质上是对传染概率及影响范围的一个权衡取舍。
3. 基于网络动态学的研究方法
网络动态学,主要通过分析行为人的决策心理并建立动态模型,研究由于时间、空间及环境等动态变化所造成的行为人的决策变化及网络结构的演变过程。复杂网络理论的研究缺陷主要在于无法模拟出金融网络的动态变化,而面对复杂的金融市场变化,金融机构的动态决策行为对于金融传染过程显然是至关重要的。因此,一些学者开始运用网络动态学的研究成果,对金融机构的这些动态变化加以研究,并用图像表示出外部冲击以及传染蔓延的动态过程,通过分析复杂的决策行为来了解网络的形成机制和过程,从而设计出最优网络结构。
Goyal和Vega-Redondo是较早运用网络动态学对金融网络进行研究的学者。他们在2004年发表的文章支持了Allen和Freixas等人的研究结论。他们认为,两方建立债务关系的过程就是一个博弈以达到最优均衡的过程,而整个关系网络的建立正是许多债务关系的动态建立过程;两方建立债务关系,就是在风险及收益之间选取一个最优纳什均衡点的动态博弈。根据这个网络构建模型,Goyal等人在考察了不同的连接方式、连接费用以及不同的相互作用模式对风险传染起到的作用之后,得出结论:“完全连接”模式(即规则网络)与较长的最小路径长度可以有效地减小金融风险的传染。
4.基于运筹法的最优微观结构判断
定量分析的研究目前相对偏少,研究方法也多为运用运筹学方法解决最优化问题,Leitner在2005年给出的“每个小群体的最优节点数量”在这方面具有重要的代表意义。Leitner(2005)建立了一个不仅能相互传染、也能相互救助的金融网络,流动性较好的银行会因为担心受到传染而救助流动性不足的银行。该模型说明银行间的相互连接对于减少破产危机的发生具有重要意义,因为它们允许银行间相互救助;然而整个网络也可能因为过度连接而在某些情况下(如当流动性限制在一小部分银行中时)出现传染蔓延并最终崩溃。基于对网络连接带来的好处(允许银行相互救助)以及坏处(危机可能蔓延)的取舍,Leitner运用运筹学知识,通过求解一个带有约束的规划问题给出了最优金融网络的规模——每个小群体内的最优节点数量为5。
5. 其他研究方法
还有学者通过统计学、传染病学等其他理论工具,对金融网络的最优微观特征的研究做出了贡献。Gai等人利用传染病学以及统计物理学的知识,与其他学者再次对金融网络的最优微观特征问题进行了研究。在仍然坚持“最优网络结构具有适当偏长的最小路径长度特征”的同时,Gai又得出了“复杂度较低也是最优网络结构的重要特点”的结论。Iori等人利用统计学方法研究单个银行的风险与整个银行间市场相互作用的动态过程发现,较低的聚类系数可以有效提升金融网络的稳定性。这与Simon在1962年所著的“The Architecture of Complexity”中的观点相吻合:在复杂系统中,只有最简单的层次结构才是最优的。Iori认为,银行间拆借虽然降低了单个银行的破产概率,但也增加了整个系统崩溃的机会。当银行间网络的聚类系数较高,即系统内的银行都是同种类型时,系统崩溃发生的可能性比较大;而当聚类系数较低,即银行的类型不相同时,崩溃发生的可能性就会降低。较低的聚类系数可以有效提升金融网络的稳定性。也有学者把金融网络与其他网络系统(如生态网络系统)进行类比。Haldane和May所做的这方面研究支持了Gai的关于“最优网络结构的复杂度较低”的结论。在经过对生态系统的食物链以及金融网络的对比分析之后,他们认为金融系统和生态系统一样,复杂程度越高,整个网络的稳定性就越差。
尽管所用的研究方法各不相同,但是目前所得到的关于最优金融网络的微观特征的结论非常相似。总的来说,具有“完全连接”、较低的复杂程度、适当偏长的平均最短路径长度以及较小的聚类系数是最优网络结构的几个主要特征。Nier等人对金融网络的特征做了较为完整的界定。他们利用网络理论知识,认为银行体系网络结构的关键参数一共有四个:银行的资本化水平,网络的连接程度,银行间的借贷规模,银行系统的集中程度。他们通过建立银行网络系统并加以模拟的方法得出结论:资本化水平越高、借贷规模越低、集中程度越低,则银行系统的稳定性越高;而连接程度则与稳定性呈非线性关系,当连接程度超过阈值之后,连接程度越高,稳定性越低。
四、金融网络的最优宏观结构
基于描述金融网络的三大基本指标,上文总结了前人对于较为稳定的金融网络应该具有的指标特征。基于这些基本的指标,整个金融网络将会呈现一定的宏观结构,如前文指出的小世界网络和无标度网络。这些基于多个基本指标共同呈现出的复杂的拓扑结构,构建出了金融网络的整个宏观拓扑结构,结合图论知识不仅能判断某一现实生活中的网络属于哪一类网络宏观结构,同时能够对其在传染过程中所起到的作用做出一定的判断。
Watts、Strogatz和Barabási、Albert相继于1998、1999年提出了“小世界网络”模型以及“无标度网络”模型,这标志着复杂网络理论的逐渐成熟。许多学者开始以这两个模型为衡量标准,通过实证结合统计分析等方法来研究现实中的金融网络所具有的宏观结构特征,并结合复杂网络理论探讨如何设计宏观网络结构才能更有效地防止金融传染。目前大多数研究都表明,金融网络兼具“小世界网络”以及“无标度网络”的某些特征,这些特征显著地影响着危机的传染过程。
金融网络最典型的宏观拓扑结构特征之一,就是平均最短路径长度较小,这正是“小世界网络”所独有的典型特征,这已经被包括Soramaki和Boss等许多学者所证实。Soramaki等人利用复杂网络方法分析了美国商业银行的银行间支付系统网络的拓扑结构以及与网络稳定性相关的性质,发现该银行间网络具有较小的平均路径长度。Boss 等人对奥地利银行间市场进行实证研究后也认为,奥地利银行间网络的平均路径长度较小。Boss还得出了另外一个结论:银行间网络的聚类系数较小。他们认为,因为银行之间保持连接需要一定的费用,所以当两个较小的银行都与一家较大的银行存在价值关系时,这两家小银行之间没有互相连接的动力。
金融网络还体现了“无标度网络”的两个重要特征:节点度分布服从幂律分布以及中心节点的存在。Soramaki等人的研究证实,美国商业银行的银行间支付网络的节点度分布属于幂律分布,同时该银行间网络还包括一些节点度数很高的“中心型”(Hub)银行。Iori等人则是运用复杂网络的统计分析方法,对意大利银行的隔夜拆借市场的网络结构进行了分析,发现节点的度分布服从一个比随机网络更为厚尾的分布。这也意味着,存在数量很少的几家较大的银行,与非常多的小额贷款者保持债务关系,这些规模较大、节点度较高的银行就是典型的中心节点。更进一步地,Boss等人不仅证明了奥地利银行间的节点度分布服从幂律分布,他们还精确地计算出该银行间网络分段服从的幂指数分别为0.62和2.01。
金融网络的这些宏观特征对于分析金融系统的传染性是非常重要的。Albert等人在2000年的研究表明,当中心节点受到冲击时,“无标度网络”将会变得特别脆弱,且很容易造成传染蔓延。尽管“小世界网络”在单个小型金融机构破产时有很强的稳定性,但是,一旦少数节点度数较高、也就是负债规模较大的(中心节点)银行破产时,银行系统受到的冲击将会很大。
金融系统的这种风险特点也与损失函数服从薄尾分布的特性相吻合,当发生危机的是一般的小型金融机构时,金融系统拥有较强的自我修复能力;但是一旦关键的大型金融机构(中心节点)发生流动性危机时,金融系统将会变得非常脆弱,从而极有可能造成金融传染的蔓延以及严重的资产损失。
五、金融网络研究中亟待解决的难题
尽管对于金融网络的研究已经取得了许多的突破性进展,但是,该领域的研究仍然存在几个较为棘手的难点。其中,构造网络的数据缺失问题以及如何将宏、微观研究方法相结合的问题一直困扰着该领域的学者们。
金融网络中存在数量众多的节点以及纷繁复杂的连接关系,这使得要构造一个完整的金融网络就需要大量的数据;然而,金融机构之间较为可靠的借贷关系数据是很难获得的。目前应对这个难题通常有两种方法:第一种方法是只研究信息完全的那一部分金融网络;这种方法的缺点在于“以偏概全”,把局部网络所具有的特征当做整个金融网络的特征。例如,Furfine在1999年的研究只采用了联邦储备市场的数据(该市场仅占整个银行间市场的10%—20%),造成最后所得结果与其他学者的研究结论存在差异,低估了金融传染的危害性。而第二种方法是用某些合理的假设和方法去估计数据。目前大部分文献使用最大熵方法估计,但最大熵估计方法的缺陷主要在于,在满足特定的约束之下它假设金融机构之间的借贷是均匀分布的,这显然与事实不太相符。Mistrulli分别用最大熵方法和基于完全数据的方法对同一市场做了分析,研究发现,最大熵估计方法可能会高估传染的扩散范围,从而造成对传染损失的错误估计。这两位学者的研究表明,两种方法都存在一定的缺陷。如果能将这两种方法有机地结合,或者运用创新的研究工具解决金融网络的数据获取难题,我们将能构造更为真实、更为完善的金融网络。
另一个难题则是如何将宏、微观的研究方法相结合。微观方法能清晰直观地解释网络的连接方式以及传染的传导过程,但是其对于网络宏观结构的假设过于简单,而无法在整体上把握金融传染特征;而宏观方法虽然能较好地解释金融网络的拓扑性质,但很难对金融机构的决策行为做出分析,也很难把握金融网络的动态变化。
若能将宏、微观分析方法相结合,则可以对金融网络的形成过程、传染特点等都得到更为清晰、更为全面的认识。Schweitzer等人认为,这需要从五个方面做出更大的突破:大数据量的分析,即分析金融网络中每一节点的动态发展过程,这对编程计算能力提出了更高的要求;把研究扩展到更广的时间和空间上,动态分析整个冲击以及传染过程在时间、空间上的变化,即我们需要进一步发展网络动态学;更精确地界定网络结构,并引入一些全新的概念,例如描述性指标的复合指标(如网络的k-核结构、支配力等),还有银行网络的Motif结构等,以使得对金融网络的描述更加细致;修改某些外生假定以得到更加贴近现实的模型,例如取消对资金流动范围的限制并允许金融传染在全球范围内发生;借助于系统工程学的稳定性研究,通过建立反馈机制考察金融网络的稳定性。
综上,从金融网络的宏、微观结构特征来看,最优金融网络具有“完全连接”、较低的复杂程度、适当偏长的最小路径长度以及较小的聚类系数等几个主要的微观特征。而现实中的金融网络通常具有“小世界网络”以及“无标度网络”的典型特点。要想防止金融传染,我们应该设计一个具有“完全连接”、较低的复杂程度、适当偏长的平均最短路径长度以及较小的聚类系数等微观特征的金融网络,同时必须提高对金融网络中中心节点的监测和救助。(完)
文章来源:《财经问题研究》2013年第2期。(本文作者:巴曙松;左伟;朱元倩。原文题目为:《金融网络及传染对金融稳定的影响》)
