上期咱讲了期望,这期自然是方差了。方差很重要,为什么呢?因为它体现了数据的离散程度。为什么我们总要抨击那些公布出来的平均收入?如果附加一个方差是不是更能说明问题?(我觉得应该会让数据更客观和可信点),但同样不了解这些的人还是看不懂啊~~~没关系,楼主来帮你普及——
方差是各个数据与平均数之差的平方的平均数。在概率论和数理统计中,方差(Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。方差刻画了随机变量的取值对于其数学期望的
离散程度。
如果不平方,那么就是标准差。很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。
以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。方差之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方(平方是因为更方便的进行数据处理,比如积分……)
方差的计算公式:
方差的性质:
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=c2D(X)。
(3)设 X 与 Y 是两个随机变量,则D(X+Y)= D(X)+D(Y)+2Cov(X,Y)
D(X-Y)= D(X)+D(Y)-2Cov(X,Y)
特别的,当X,Y是两个不相关的随机变量则D(X+Y)=D(X)+D(Y),D(X-Y)=D(X)+D(Y),此性质可以推广到有限多个两两不相关的随机变量之和的情况。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即X=c,a.s.其中E(X)=c。
(5)D(aX+bY)=a2DX+b2DY+2abCov(X,Y)。
帮助人大经济论坛推广,复制贴子内容(带人大经济论坛网址)并发到其他论坛和网站;或点击贴子标题后的“推广有奖”,把本贴推荐到QQ群或自己的微博(最好@人大经济论坛),然后跟贴贴出链接或截图,证明已作推广的,将获得如下论坛币的奖励!(大家一定要把群现有人数或微博粉丝人数截屏出来哦~不然只能奖励10个币哦)
活动奖励方式(同一个群或微博或网站分享多次算一次,所有截图均需显示分享人数,否则默认低档奖励):
1.凡分享的QQ群,人数在100人以下的,视情况奖励10-20论坛币;100-500人的,奖励20-50论坛币(每群限奖励一次);500人以上的奖励50-100论坛币。
2.凡分享到微博,您的粉丝在100人以下的,视情况奖励10-20论坛币;100-500人的,奖励20-50论坛币(每微博限奖励一次);500人以上的奖励50-100论坛币。
3.凡分享到其他网站(包括校内网等),帖子保留一天以上的(24小时后截图),奖励50论坛币
最新消息!龟宝有了自己的文库啦(虽然之前也建过,但这是真正意义上的自己的哦!)欢迎大家来戳它!
甩链接:https://bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=2584