立即打开
丘成桐谈数学一、丘成桐:学数甘苦谈(来自浙江大学数学科学研究中心肖青 2004年10月)
学数甘苦谈
小学时的我,数学并不高明。对那些千篇一律的练习,更感到枯燥无味。这种情况一直维持到十三岁才有所改变──当我接触到平面几何,发现它能利用简单的公设来推导漂亮且复杂的定理后,实在令我心驰神往。我随即着手探讨这科目,尝试自己找出有趣的命题,然后利用这些公设加以证明,沉迷当中,其乐无穷。
我站在书店打书钉,读了不少书﹙当时的图书馆都很简陋﹚。渐渐地,我便学会了一些同学甚至老师都不懂的东西。我非常自豪,视之为自己的「秘密武器」。
有一次遇上一道作图题,题目规定只许用直尺和圆规来完成。我当时自持擅于此道,但花了超过半年工夫,还是毫无头绪,令我十分气馁。由于这不是如「三分等角」之类的标准题目,当时老师也帮不上忙。后来,我从日本数学家的著作中找到一条定理,方知道这种作图题是不可能完成的。这让我明了代数在解决古典平面几何难题中的威力,着实十分难忘。
这件事也告诉我读课外书的好处。当时我上的中学,其数学水平可说是数一数二的了,但我有强烈的求知欲,想获得超出课本水平的知识,我只好到图书馆找书自我进修。当时在图书馆中找好书不易,加上读书时无人请教,令我举步维艰。很多时书读上三遍,犹有不明白之处,但我总觉获益良多。
书读的愈多,我便渐渐地把所读的融会贯通。当需要用到某些概念时,以前不甚了了的,现在突然都变得一清二楚,明白不过。这些年来,在研究生涯中,类似的情况屡见不鲜。
我个人的经验是,不妨对有兴趣的科目多加研习,且不要理会有没有立竿见影的好处。我研习几何后,便考虑涉猎其它数学科目,但发现它们不像平面几何那样建基于公设。我心中感到不是味儿,因为我相信所有数学都应该是百分之百严谨的。及至进了大学,学习了狄狄金分割及其它构造法后,我才理解到整个数学的建构,是如此的美轮美奂。
虽然我素来对研究数理逻辑,并不热衷,但数学简约严谨之美,实在令人动容,赞叹无已。所以,我对投身数学研究,无悔无憾。为追求学问之纯美而工作,是许多科学家的原动力。我想每一个优秀的学生,都应该感受到科学的魅力吧。
我在香港时,苦无机会亲炙数学大师。在1969年到柏克莱后,情况便明显改善过来。我对数学的体会,作了一百八十度的转变,对学问的鉴赏能力也大大提高,此实有赖于周遭的科学家。正如鱼儿在水,或困在浅沼,或游于大洋,其眼界何啻天壤!要成为一流的科学家,必须为大科学家所熏陶,此点极为要紧。毕竟与世隔绝,而能成就大学问者,古今罕有。为此之故,凡有科学大师演讲,我都抓紧机会,出席细听。
以上便是个人的一些体会。我非天资卓绝,但福至心灵,选对了人生的道路,有所成就,实乃至幸。
二、丘成桐:数学的内容、方法和意义(在北大百周年校庆学术报告会上的演讲)
今天要讲的是数学的内容、方法和意义,这原是苏联人写的一本书的书名,和今天的演讲内容借过来作为演讲的名称。
今天是北大百周年校庆,五四运动便是北大学生发动的。作为演讲的引子,让我们先简略地回顾一下“五四”前后中西文化之争。十九世纪中业以后,中国对西文科技的认识,是“船竖炮利”,在屡次战争失利后,张之洞提出了“中学为体、西学为用”的主张,即以传统儒家精神为主,加入西方的技术。到了五四运动前后便有了科玄论战。以梁漱溟为主的一派以东方精神文明为上,捍卫儒学,以为西方文明强调用理性和知识去征服自然缺乏生命之道,人变成机械的奴隶;而中国文化自适自足,行其中道,必能发扬光大。其时正值第一次世界大战结束,西方哲学家罗素等对西方物质文明深恶痛绝,也主张向东方学习。另一派以胡适为首者则持相反意见,他们以为在知识领域内科学万能,人生观由科学方法统驭,未经批判及逻辑研究的,皆不能成为知识。
科玄论战最终不了了之,并无定论。两派对近代基本科学皆无深究,也不收集数据,理论无法严格推导,最后变得空泛。其实这便是中国传统文化之一特点。一方面极抽象,有质而无量,儒道皆云天人合一,禅宗又云不立文字,直指心性。另一方面则极实际,庄子说“蔽于天而不知人”。古代的科学讲求实用,一切为人服务,四大发明之一指南针、造纸、印刷术、火药莫不如此。要知道西方技术之基础在科学,实际和抽象的桥梁乃是基本科学,而基本科学的工具和语言就是数学。
历代不少科学家对数学都有极高的评价。我们引一些物理学家的话作为例子。R.Feyman在「物理定律的特性」一书中说我们所有的定律,每一条都由深奥的数学中的纯数学来叙述,为什么?我一点也不知道。E.Wigner说数学在自然科学中有不合常理的威力。FDyson说:在物理科学史历劫不变的一项因此,就是由数学想像力得来的关键贡献,基本物理既然由高深的数学来表示。应用物理,流体等大自然界的一切现象,只要能得到成熟的了解时,都可以用数学来描述。写过「湖滨散记」的哲人梭罗也说有关真理最明晰,最美丽的陈述,最终必以数学形式展现。
其实数学家不只从自然界吸收养分,也从社会科学和工程中得到启示。人类心灵中由现象界启示而呈现美的概论,只要能够用严谨逻辑来处理的都是数学家研究的对象。数学和其他科学不同之处是容许抽象,只要是美丽的,就足以主宰一切,数学和文学不同之处是一切命题都可以由公认的少数公理推出。数学正式成为系统性的科学始于古希腊的欧机里德,他的「几何原本」是不朽名作。明末利玛窦和徐光启把它译成中文,并指出“十三卷中五百余题,一脉贯通,卷与卷,题与题相结倚,一先不可后,一后不可先,累累交承渐次积累,终竟乃发奥微之义”。复杂深奥的定理都可以由少数简明的公理推导,至此真与美得到确定的意义,水乳交融,再难分开。值得指出,欧机里德式的数学思维,直接影响了牛顿在物理上三大定律的想法,牛顿距著「自然哲学的数学原理」与「几何原本」一脉相承。从爱因斯坦到现在的物理学家都希望完成统一场论,能用同一种原理来解释宇宙间的一切力场。
数学的真与美,数学家的体会深刻。Sylvester说“它们揭露或阐明的概念世界,它们导致的对至美与秩序的沉思,它各部分的和谐关联,都是人类眼中数学最坚实的根基”。数学史家M.Kline说“一个精彩巧妙的证明,精神上近乎一首诗”。当数学家吸收了自然科学的精华,就用美和逻辑来引导,将想像力发挥的淋漓尽致,创造出连作者也惊叹不已的命题。大数学家往往有宏伟的构思,由美作引导,例如Weil猜想促成了重整算数机何的庞大计划,将拓扑和代数几何融入整数方程论中。由A.Grothendieck和P.Deligne完成的Weil猜想,可说是抽象方法的伟大胜利。回顾数学的历史,能够将几个不同的重要观念自然融合而得出的结果,都成为数学发展的里程碑。爱因斯坦将时间和空间的观念融合,成为近百年来物理学的基石;三年前A.Wiles对自守型式和Fermat最后定理的研究,更是扣人心魄。数学家能够不依赖自然科学的启示得出来的成就,令人惊异,这是因为数字和空间本身就是大自然的一部分,它们的结构也是宇宙结构的一部分。然而,我们必须紧记,大自然的奥秘深不可测,不仅仅在数字和空间而已,它的完美无处不在,数学家不能也不应该抗拒这种美。
本世纪物理学两个最主要的发现:相对论和量子力学对数学造成极大的冲击。广义相对论使微分几何学“言之有物”,黎曼几何不再是抽象的纸上谈兵。量子场论从一开始就让数学家迷惑不已,它在数学上作用仿如魔术。例如Dirac方程在几何上的应用使人难以捉摸,然而它又这么强而有力地影响着几何的发展。超对称是最近二十年物理学家发展出来的观念,无论在实验或理论上都颇为诡秘,但借着超弦理论的帮助,数学家竟能解决了百多年来悬而未决的难题。超弦理论在数学上的真实性是无可置疑的,除非造化弄人,它在物理上终会占一席位。
上世纪末数学公理化运动使数学的严格性坚如盘石,数学家便以为工具已备,以后工作将无往而不利。本世纪初Hilbert便以为任何数学都能用一套完整的公理推导出所有的命题。但好景不常,Godel在931年发表了著名的论文“「数学原理」中的形式上不可断定的命题及有关系统I”。证明了包含着通常逻辑和数论的一个系统的无矛盾性是不能确立的。这表示Hilbert的想法并非是全面的,也表示科学不可能是万能的。然而由自然界产生的问题,我们还是相信Hilbert的想法是基本正确的。
数学家因其品禀各异,大致可分为下列三种:
(一)创造理论的数学家。这些数学家工作的模式,又可粗分为七类。
●从芸芸现象中窥见共性。从而提炼出一套理论,能系统地解释很多类似的问题。一个明显的例子便是上世纪末Lie在观察到数学和物理中出现大量的对称后,便创造出有关微分方程的连续变换群论。李群已成为现代数学的基本概念。
●把现存理论推广或移植到其它结构上。例如将微积分由有限维空间推广到无限维空间,将微积分用到曲面而得到连络理论等便是。当Ricci,Christofel等几何学家在曲面上研究与座标的选取无关的连络理论时,他们很难想像到它在数十年后的Yang-Mills场论中的重要性。
●用比较方法寻求不同学科的共同处而发展新的成果。例如:Weil比较整数方程和代数几何而发展算数几何:三十年前Langlands结合群表示论和自守形式而提出“Langlands纲领”,将可以交换的领域理论推广到不可交换的领域去。
●为解释新的数学现象而发展理论。例如:Gauss发现了曲面的曲率是内蕴(即仅与其第一基本形式有关)之后,Riemann便由此创造了以他为名的几何学,成就了近百年来的几何的发展;H.Whitney发现了在纤维丛上示性类的不变性后,Pontryagin和陈省身便将之推广到更一般的情况,陈示性类在今日已成为拓扑和代数几何中最基本的不变量。
●为解决重要问题而发展理论。例如J.Nash为解决一般黎曼流形等距嵌入欧氏空间而发展的隐函数定理,日后自成学科,在微分方程中用处很大。而S.Smale用h-协边理论解决了五维或以上的Poincare猜想后,此理论成为微分拓扑的最重要工具。
●新的定理证明后,需要建立更深入的理论。如Atiyah-Singer指标定理,Donaldson理论等提出后,都有许多不同的证明。这些证明又引起重要的工作。
●在研究对象上赋予新的结构。Kahler在研究复流形时引入了后来以他为名的尺度;近年Thurston在研究三维流形时,也引进了“几何化”的概念。一般而言,引进新的结构使广泛的概念得到有意义的研究方向。有时结构之上还要再加限制,如Kahler流形上我们要集中精神考虑Kahler-Einstein尺度,这样研究才富有成果。
(二)从现象中找寻规律的数学家。这些数学家或从事数据实验,或在自然和社会现象中发掘值得研究的问题,凭着经验把其中精要抽出来,作有意义的猜测。如Gauss检视过大量质数后,提出了质数在整数中分布的定律;Pascal和Fermat关于赌博中赔率的书信,为现代概率论奠下基石。五十年代期货市场刚刚兴起,Black和Scholes便提出了期权定价的方程,随即广泛地应用于交易上。Scholes亦因此而于去年获得诺贝尔的经济学奖。这类的例子还有很多,不胜枚举。
话说回来,要作有意义的猜测并非易事,必须对面对的现象有充分的了解。以红楼梦为例,只要看了前面六七十回,就可以凭想像猜测后面大致如何。但如果我们对其中的诗词不大了解,则不能明白它的真义。也无从得到有意义的猜测。
(三)解决难题的数学家。所有数学理论必须能导致某些重要问题的解决,否则这理论便是空虚无价值的。理论的重要性必与其能解决问题的重要性成正比。一个数学难题的重要性在于由它引出的理论是否丰富。单是一个漂亮的证明并不是数学的真谛,比如四色问题是著名的难题,但它被解决后我们得益不多,反观一些难题则如中流砥柱,你必须将它击破,然后才能登堂入室。比如一日不能解决Poincare猜测,一日就不能说我们了解三维空间!我当年解决Calabi猜测,所遇到的情况也类似。
数学家要承先启后,解掉难题是“承先”,再进一步发展理论,找寻新的问题则是“启后”。没有新的问题数学便会死去,故此“启后”是我们数学家共同的使命。我们最终目标是用数学为基础,将整个自然科学,社会科学和工程学融合起来。
自从A Wiles在1994年解决了Fermat大定理后,很多人都问这有什么用。大家都觉得Fermat大定理的证明是划时代的。它不仅解决了一个长达350年的问题,还使我们对有理数域上的椭圆曲线有了极深的了解;它是融合两个数论的主流——自守式和椭圆曲线——而迸发出来的火花。值得一提的是,近十多年来椭圆曲线在编码理论中发展迅速,而编码理论将会在电脑贸易中大派用场,其潜力无可估计。
最后我们谈谈物理学家和数学家的差异。总的来说,在物理学的范畴内并没有永恒的真理,物理学家不断努力探索,希望能找出最后大统一的基本定律,从而达到征服大自然的目的。而在数学的王国里,每一条定理都可以从公理系统中严格推导,故此它是颠扑不破的真理。数学家以美作为主要评选标准,好的定理使我们从心灵中感受大自然的真与美,达到“天地与我并生,万物与我为一”的悠然境界,跟物理学家要征服大自然完全不一样。
物理学家为了捕捉真理,往往在思维上不断跳跃,虽说是不严格和容易犯错,但他们欲能把自然现象看得更透更远,这是我们十分钦佩的。毕竟数学家要小心奕奕、步步为营,花时间把所有可能的错误都去掉,故此这两种做法是互为表里,缺一不可的。
在传统文化中,我们说立德,但即从不讨论如何求真,不求真,则何以立德?我们又说“温柔敦厚,诗教也”,但只是含糊的说美,数学兼讲真美,是中华民族需要的基本科学。 起,”他说:“数学界为你们二位所做的工作感到骄傲。它表明数学这棵长满节瘤的老树仍然充满着汁液和生机。你们是怎样开始的,就怎样继续下去吧!”
从一九五八年起,改成每位获奖者分别由一位数学家介绍。介绍的内容比较地局限于工作, 对于获奖者个人的情况很少涉及。这个做法,一直延续到最近一次大会。
全文未完,请见附件
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
全部回复
紫霄香榭 发表于 2014-11-20 22:21
丘成桐谈数学一、丘成桐:学数甘苦谈(来自浙江大学数学科学研究中心肖青 2004年10月)
学数甘苦谈
小学时 ...
他苦学数学的经历正是我现在在经历的,谢谢
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
相关推荐
栏目导航
热门文章
推荐文章
扫码加好友,拉您进群