全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
7023 8
2009-08-02
悬赏 50 个论坛币 未解决
xtabond2 booklever lagbooklever_fd2 lagbooklever_fd lagbooklever laggrowth lagppe lagprofit lagvar lagsize lagunique la
> gshield lagmean_ml, gmmstyle(lagbooklever_fd2 lagbooklever_fd lagbooklever) ivstyle(laggrowth lagppe lagprofit lagvar l
> agsize lagunique lagshield lagmean_ml) twostep robust small
Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
  Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: stkcd                           Number of obs      =      2478
Time variable : trdynt                          Number of groups   =       546
Number of instruments = 141                     Obs per group: min =         1
F(11, 545)    =    102.05                                      avg =      4.54
Prob > F      =     0.000                                      max =         9
------------------------------------------------------------------------------
             |              Corrected
   booklever |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
lagbooklev~2 |  -.4242184   .1917901    -2.21   0.027    -.8009567   -.0474802
lagbooklev~d |   .1862471   .0784806     2.37   0.018     .0320856    .3404086
lagbooklever |   .8010709   .0448344    17.87   0.000     .7130016    .8891402
   laggrowth |  -.0070225   .0049706    -1.41   0.158    -.0167863    .0027414
      lagppe |   .0772451   .0212869     3.63   0.000     .0354307    .1190594
   lagprofit |   .1792112   .0724134     2.47   0.014     .0369676    .3214548
      lagvar |   .0389165   .1106138     0.35   0.725     -.178365    .2561981
     lagsize |   -.009736   .0039505    -2.46   0.014     -.017496    -.001976
   lagunique |  -.0555462   .0367504    -1.51   0.131     -.127736    .0166437
   lagshield |  -.6006677   .2181873    -2.75   0.006    -1.029259   -.1720765
  lagmean_ml |   -.017447   .0461081    -0.38   0.705    -.1080184    .0731244
       _cons |   .2596013   .0797927     3.25   0.001     .1028624    .4163402
------------------------------------------------------------------------------
Instruments for first differences equation
  Standard
    D.(laggrowth lagppe lagprofit lagvar lagsize lagunique lagshield
    lagmean_ml)
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    L(1/.).(lagbooklever_fd2 lagbooklever_fd lagbooklever)
Instruments for levels equation
  Standard
    _cons
    laggrowth lagppe lagprofit lagvar lagsize lagunique lagshield lagmean_ml
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    D.(lagbooklever_fd2 lagbooklever_fd lagbooklever)
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z =  -9.06  Pr > z =  0.000
Arellano-Bond test for AR(2) in first differences: z =   0.05  Pr > z =  0.957
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(129)  = 293.69  Prob > chi2 =  0.000
  (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(129)  = 174.89  Prob > chi2 =  0.004  

(Robust, but can be weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Hansen test excluding group:     chi2(105)  = 139.10  Prob > chi2 =  0.015
    Difference (null H = exogenous): chi2(24)   =  35.78  Prob > chi2 =  0.058


  iv(laggrowth lagppe lagprofit lagvar lagsize lagunique lagshield lagmean_ml)
    Hansen test excluding group:     chi2(121)  = 162.86  Prob > chi2 =  0.007
    Difference (null H = exogenous): chi2(8)    =  12.02  Prob > chi2 =  0.150





问题:
Sargan test of overid. restrictions: chi2(129)  = 293.69  Prob > chi2 =  0.000
  (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(129)  = 174.89  Prob > chi2 =  0.004  

(Robust, but can be weakened by many instruments.)


Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Hansen test excluding group:     chi2(105)  = 139.10  Prob > chi2 =  0.015
    Difference (null H = exogenous): chi2(24)   = 35.78  Prob > chi2 =  0.058



  iv(laggrowth lagppe lagprofit lagvar lagsize lagunique lagshield lagmean_ml)
    Hansen test excluding group:     chi2(121)  = 162.86  Prob > chi2 =  0.007
    Difference (null H = exogenous): chi2(8)    =  12.02  Prob > chi2 =  0.150


(1)这三块检验量(红绿蓝)分别用来说明什么,特别是下面两部分(绿色那块和蓝色那块)
(2)(绿色那块和蓝色那块中的)Hansen test excluding group和Difference (null H = exogenous)有什么区别
(3)139.10+35.78=162.86+12.02=174.89;105+24=121+8=129

详细点啊,谢谢了,如果不想打字,通过信箱告诉我其它的联系方式,我直接问你,上面的金钱也会直接给你
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-8-5 12:14:44
问题一:用什么来判断其整个模型的拟合度,即类似于OLS回归中的“调整R平方”?
回答:无法判断

问题二:差分hansen检验中“Hansen test excluding group:     chi2(105)  = 139.10  Prob > chi2 =  0.015”和“Difference (null H = exogenous): chi2(24)   =  35.78  Prob > chi2 =  0.058”分别用来说明什么?
同样,“ Hansen test excluding group:     chi2(121)  = 162.86  Prob > chi2 =  0.007”和“Difference (null H = exogenous): chi2(8)    =  12.02  Prob > chi2 =  0.150”又分别用来说明什么?

答:我只知道这是用来判断附加工具变量过度识别的,但为什么是4个,谁能告诉我。


问题三:如果Hansen检验通不过,要怎么处理(换工具变量吗?);还是说这种方法不适用于这个数据集?

答:可以通过改变工具变量得到好的结果

问题四:对于模型Yt=a0+a1 Yt-1+a2 Mt *Yt-1+a3 Xt, Mt *Yt-1 是Mt和Yt-1的交乘项,那么正常情况下,估计时的命令是
(1)“xtabond2 Yt Yt-1 Mt*Yt-1 Xt, gmmstyle(Yt-1) ivstyle(Xt)”
还是(2)“lagbooklever_fd2 lagbooklever_fd 即 Mt *Yt-1要不要与Yt-1一样视为前定变量?
还是把其当成外生变量(3)“xtabond2 Yt Yt-1 Mt*Yt-1 Xt, gmmstyle(Yt-1) ivstyle(Mt*Yt-1 Xt)”
这三个要选哪一个

答:具体问题具体分析,看交互项的性质,如果是0或1哑变量,则把其与lagbooklever相当;如果是其它的外生变量,则当其为外生变量。

这些是我后来自己理解的,不过怕有问题,大家为什么不讨论一下呢?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-8-20 14:58:44
楼主,你的问题自己解决了吗?我也遇到同样的问题。比如,判断附加工具变量过度识别的4个结果中,应该汇报哪两个呢?另外,如何通过改变工具变量得到好的结果?着急中,请不吝赐教。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-8-20 15:06:18
Arellano-Bond test for AR(1) in first differences: z =  -8.40  Pr > z =  0.000
Arellano-Bond test for AR(2) in first differences: z =      .  Pr > z =      .
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(26)   = 191.94  Prob > chi2 =  0.000
  (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(26)   =  46.11  Prob > chi2 =  0.009
  (Robust, but can be weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Hansen test excluding group:     chi2(11)   =  14.58  Prob > chi2 =  0.203
    Difference (null H = exogenous): chi2(15)   =  31.54  Prob > chi2 =  0.007
  iv( var1 var2 var3 var4 var5 _Iyear_2001 _Iyear_2002 _Iyear_2003 _Iyear
> _2004, eq(level))
    Hansen test excluding group:     chi2(19)   =  25.82  Prob > chi2 =  0.135
    Difference (null H = exogenous): chi2(7)    =  20.30  Prob > chi2 =  0.005

麻烦哪位高手帮我看一下上面结果,为什么AR(2)的P值没有汇报呢?另外,哪个结果是说明整个工具变量有效性的?哪个结果又是说明GMM类和IV类工具变量子集有效性的?麻烦具体一些,先谢谢了。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-8-23 10:32:17
希望这篇文章对你们有用
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-8-23 10:33:00
劳动力抚养负担对居民储蓄率的影响研究  钟水映李魁
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群