摘要:针对计算机网络故障诊断知识库冗余性高、神经网络与PCA、DS证据等理论相结合诊断精度不高的难题,提出了一种新的基于粗糙集和BP神经网络的计算机网络故障诊断模型.首先利用粗糙集算法对网络故障特征进行约简处理、提取最小诊断规则;其次利用最小规则训练BP神经网络,建立基于粗糙集和BP
神经网络的计算机网络故障诊断模型;最后将模型运用于真实网络故障数据诊断.结果表明:该模型具有学习效率高、诊断速度快、准确率高的特点,能够快速诊断网络故障类型.
原文链接:http://www.cqvip.com/QK/91297X/201302/45335645.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)