全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
671 0
2017-09-20
摘要:提出了一种基于粒子群优化BP神经网络风电机组齿轮箱故障诊断方法。粒子群算法不需要计算梯度,可以兼顾全局寻优和局部寻优。利用粒子群算法对BP网络权值和偏置进行优化,减少了BP神经网络算法陷入局部最优解的风险,提高了神经网络的训练效率,加快了网络的收敛速度。考虑风电齿轮箱振动信号的不确定性、非平稳性和复杂性,提取功率谱熵、小波熵、峭度、偏度、关联维数和盒维数作为故障特征。经测试,算法诊断结果正确,表明了PSO优化BP神经网络用于风电机组齿轮箱故障诊断的有效性和实用性。

原文链接:http://www.cqvip.com/QK/95586X/201201/40734445.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群