全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
742 0
2017-09-22
摘要:BP神经网络具有自学习和自适应能力,比较适合于基于油中溶解气体分析的变压器故障诊断。分析了常规BP算法的不足,指出了加动量项BP算法的原理和优点。该方法减轻了网络训练过程中的振荡,加速了网络的收敛。针对常规的BP神经网络不能给出诊断结果的可信度问题,利用多个网络共同诊断,根据多个诊断结果的标准差获得诊断结果的可信度,多个结果的均值作为最终诊断结果,从而提高了准确性。构造了适合于变压器油中溶解气体分析故障诊断的神经网络,并将训练所得的多个神经网络用于变压器故障诊断。结果表明了该方法的有效性。

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=32956536

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群