全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
434 0
2018-01-29
摘要:量子遗传算法是基于量子计算原理的概率优化方法,在量子门更新过程中,旋转角的大小直接影响优化的结果和进化的速度。文中针对模糊量子遗传算法(FQGA)容易导致系统陷入局部最优的缺点,将量子衍生交叉算法的思想引入FQGA,提出了一种新的量子遗传算法。同时利用该方法构造径向基函数神经网络进行非线性系统辨识。其特点是通过这种新的量子遗传算法,实现对RBF神经网络权值、宽度和中心位置等有关参数的估计。其速度快、精度高。通过RBF神经网络有效地完成了对非线性系统的辨识。对典型非线性函数辨识的测试表明:该方法有效地提高了量子遗传算法的计算精度和收敛速度。同时利用该方法设计了一种通用的热工对象模型辨识神经网络算法,编制了专用的模型识别软件,对某电厂循环流化床锅炉一次风对床温的动态特性进行辨识,结果表明该方法是一种精度比较高的辨识算法。http://www.cqvip.com//QK/90021X/200817/27619174.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群