摘要:大气污染预报可以对大气污染提出警示,保护人体健康和生活环境.为了对北京市PM10的质量浓度进行预报,建立了用于大气污染预报的遗传神经网络模型,该模型运用遗传算法优化神经网络的权值和阈值,有效提高了网络的收敛性和预报准确率.用改进后的神经网络对北京市PM10的质量浓度进行了模拟,并将模型模拟结果与美国第3代空气质量模型Models-3(CMAQ)的数值模拟结果进行了比较.实验结果表明:遗传神经网络模型和数值模型的模拟结果的平均相对误差分别为0.21和0.26,用于空气污染物质量浓度短期预报时,神经网络模型的预测精度与数值模型的预测精度相当.对于没有条件开展空气污染数值预报的城市或地区,
神经网络是一种有效的替代方法.http://www.cqvip.com//QK/95054X/200909/1001032368.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)