全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
932 0
2018-02-15
摘要:由H.P.Huang、C.F.Lin等人和T.Inoue,S.Abe等人提出的两类模糊支持向量机是两种类型的改进支持向量机,分别克服了过学习问题和减少了多类问题分类时存在的不可分区域。如何处理异常数据和加速训练大规模数据集是支持向量机中的急需解决的两个问题。针对这两个问题,提出了一类将两类模糊支持向量机集成的快速模糊支持向量机。训练时,根据每类数据与其类中心的距离,定义隶属函数,以加大对容易被错分样本的惩罚,利用合适的参数λ选取了每类数据中隶属度值较大的边缘数据构造模糊支持向量机,测试时,利用1-a-1和模糊支持向量机的决策函数判定未知样本的类别。含有异常数据的两类问题和机器学习数据集中手写数字识别的多类问题的实验结果,验证了提出的快速模糊支持向量机减少了训练时间同时提高了学习机的推广能力。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群