全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
4833 8
2010-10-28
最近在分析股指期货及其标的指数的协整关系,用Eviews中的Cointegration Test做出来的结果是,这两个数据序列不协整。但是考虑到还存在fractional cointegration的可能性,所以就想用Phillips‘ Modified Log-Periodogram Regression Estimator验证一下。

查了资料说Stata可以做Phillips MODLPR,但本人从来没有用过Stata,希望能救我于水火。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-10-28 07:40:17
挺有想法啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-10-29 00:54:42
2# duoduoduo 这是被逼得不行了,您老能帮帮忙吗?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-10-29 00:57:23
自己顶一下……
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-11-17 08:00:42
我是不懂什么Phillips‘ Modified Log-Periodogram Regression Estimator
但是我好像找到指令并灌好了!
里面还有一个例子。

我贴一下在stata里,对该指令的描述



Description
-----------

modlpr computes a modified form of the Geweke/Porter-Hudak (GPH, 1983)
estimate of the long memory (fractional integration) parameter, d, of a
timeseries, proposed by Phillips (1999a, 1999b). If a series
exhibits long memory, it is neither stationary (I[0]) nor is it a unit
root (I{1}) process; it is an I(d) process, with d a real number. However,
distinguishing unit-root behavior from fractional integration may be
problematic, given that the GPH estimator is inconsistent against d>1
alternatives.

This weakness of the GPH estimator (see gphudak) is solved by Phillips'
Modified Log Periodogram Regression estimator, in which the dependent
variable is modified to reflect the distribution of d under the null
hypothesis that d=1. The estimator gives rise to a test statistic for d=1,
which is a standard normal variate under the null. Phillips suggests (p.11)
that deterministic trends should be removed from the series before application
of the estimator. By default, a linear trend is extracted from the series.
This may be suppressed with the notrend option.

A choice must be made of the number of harmonic ordinates to be included
in the spectral regression. The regression slope estimate is an estimate of
the slope of the series' power spectrum in the vicinity of the zero
frequency; if too few ordinates are included, the slope is calculated from
a small sample. If too many are included, medium and high-frequency components
of the spectrum will contaminate the estimate. A choice of root(T), or
power = 0.5, is often employed. To evaluate the robustness of the estimates,
a range of power values (from 0.4 - 0.75) is commonly calculated as well.
modlpr uses the default power of 0.5. A list of powers may be given.

The command displays the d estimate, number of ordinates, conventional
standard error and P-value, as well as the test statistic (zd) for
the test of d=1, and its p-value. These values are returned in a matrix,
e(modlpr), formatted for display. estimates list for details.

不过也许您已经解决问题~
祝福您
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-3-6 20:23:58
HEHE ~~~~~~~~~~~~~~`
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群