======================================
> ## Does the Gumbel family seem to be a good choice (statistic "Sn")?
> gofCopula(gumbelCopula(), x)
========Warning in fitCopula.ml(copula, u = data, method = method, start = start, :
possible convergence problem: optim() gave code=52
=====Warning in fitCopula.ml(copula, u = data, method = method, start = start, :
possible convergence problem: optim() gave code=52
======================Warning in fitCopula.ml(copula, u = data, method = method, start = start, :
possible convergence problem: optim() gave code=52
==============================================================
Parametric bootstrap-based goodness-of-fit test of Gumbel copula, dim. d = 2, with
'method'="Sn", 'estim.method'="mpl":
data: x
statistic = 0.244, parameter = 2.09, p-value = 5e-04
> ## With "SnC", really s..l..o..w.. --- with "SnB", *EVEN* slower
> gofCopula(gumbelCopula(), x, method = "SnC", trafo.method = "cCopula")
==============================================================================================Warning in fitCopula.ml(copula, u = data, method = method, start = start, :
possible convergence problem: optim() gave code=52
===
Parametric bootstrap-based goodness-of-fit test of Gumbel copula, dim. d = 2, with
'method'="SnC", 'estim.method'="mpl", 'trafo.method'="cCopula":
data: x
statistic = 0.565, parameter = 2.09, p-value = 5e-04
> ## What about the Clayton family?
> gofCopula(claytonCopula(), x)
=================================================================================================
Parametric bootstrap-based goodness-of-fit test of Clayton copula, dim. d = 2, with
'method'="Sn", 'estim.method'="mpl":
data: x
statistic = 0.0163, parameter = 3.24, p-value = 0.44
>
> ## Similar with a different estimation method
> gofCopula(gumbelCopula (), x, estim.method="itau")
=================================================================================================
Parametric bootstrap-based goodness-of-fit test of Gumbel copula, dim. d = 2, with
'method'="Sn", 'estim.method'="itau":
data: x
statistic = 0.163, parameter = 2.58, p-value = 5e-04
> gofCopula(claytonCopula(), x, estim.method="itau")
=================================================================================================
Parametric bootstrap-based goodness-of-fit test of Clayton copula, dim. d = 2, with
'method'="Sn", 'estim.method'="itau":
data: x
statistic = 0.0169, parameter = 3.17, p-value = 0.31
>
>
> ## A three-dimensional example ------------------------------------
> x <- rCopula(200, tCopula(c(0.5, 0.6, 0.7), dim = 3, dispstr = "un"))
>