摘要翻译:
引入了与期限无关的风险度量的新概念,并与现有的风险度量概念进行了比较。通过两个实例,一个是在有限概率空间上的集合,另一个是在扩散框架下的集合,表明一些广泛使用的风险度量不能用来建立与成熟度无关的风险度量。我们构造了一大类与期限无关的风险度量,并在连续时间和离散时间金融模型中给出了代表性的例子。
---
英文标题:
《Maturity-independent risk measures》
---
作者:
Thaleia Zariphopoulou and Gordan Zitkovic
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
The new notion of maturity-independent risk measures is introduced and contrasted with the existing risk measurement concepts. It is shown, by means of two examples, one set on a finite probability space and the other in a diffusion framework, that, surprisingly, some of the widely utilized risk measures cannot be used to build maturity-independent counterparts. We construct a large class of maturity-independent risk measures and give representative examples in both continuous- and discrete-time financial models.
---
PDF链接:
https://arxiv.org/pdf/0710.3892