英文标题:
《Intrinsic risk measures》
---
作者:
W. Farkas, A. Smirnow
---
最新提交年份:
2016
---
英文摘要:
Monetary risk measures are usually interpreted as the smallest amount of external capital that must be added to a financial position to make it acceptable. We propose a new concept: intrinsic risk measures and argue that this approach provides a direct path from unacceptable positions towards the acceptance set. Intrinsic risk measures use only internal resources and return the smallest percentage of the currently held financial position which has to be sold and reinvested into an eligible asset such that the resulting position becomes acceptable. While avoiding the problem of infinite values, intrinsic risk measures allow a free choice of the eligible asset and they preserve desired properties such as monotonicity and quasi-convexity. A dual representation on convex acceptance sets is derived and the link of intrinsic risk measures to their monetary counterparts on cones is detailed.
---
中文摘要:
货币风险度量通常被解释为必须添加到财务状况中以使其可接受的最小外部资本量。我们提出了一个新的概念:内在风险度量,并认为这种方法提供了从不可接受头寸到接受集的直接路径。内在风险度量仅使用内部资源,并返回当前持有的财务状况的最小百分比,该财务状况必须出售并再投资到合格资产中,以使产生的状况变得可接受。在避免无限值问题的同时,内在风险度量允许自由选择合格资产,并保持所需的特性,如单调性和准凸性。导出了凸接受集上的对偶表示,并详细讨论了内在风险度量与锥上货币度量的联系。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->