摘要翻译:
在以前的一篇论文中,作者和David Swinarski利用几何不变理论(GIT)构造了稳定映射\bar M_g,n(P^r,d)的模空间。该论文要求基域为复数,本文消除了这一限制:这里稳定映射的粗模空间是在一个更一般的基上通过GIT构造的。
---
英文标题:
《A GIT Construction of Moduli Spaces of Stable Maps in Positive
Characteristic》
---
作者:
Elizabeth Baldwin
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In a previous paper, the author and David Swinarski constructed the moduli spaces of stable maps, \bar M_g,n(P^r,d), via geometric invariant theory (GIT). That paper required the base field to be the complex numbers, a restriction which this paper removes: here the coarse moduli spaces of stable maps are constructed via GIT over a more general base.
---
PDF链接:
https://arxiv.org/pdf/0707.2050