摘要翻译:
许多生物功能要求动力必须被驱动到不平衡状态。相反,在各种情况下,快速时间尺度上的非平衡动力学可以用较慢时间尺度上的有效平衡动力学来描述。本文研究了两个不同的方面:(一)具有反馈的二元非平衡线性动力学的能量效率折衷;(二)粗粒度理论中有效参数的代价,由该动力学的有效平衡极限中的“隐藏”耗散和熵产率给出。为了有意义地讨论所需函数的能量消耗和效率之间的折衷,需要函数和能量输入之间的一对一映射。本工作所考虑的函数是其中一个变量的方差。我们通过考虑固定熵产率下得到的最小方差来得到一个一对一的映射,反之亦然。我们发现这个最小可达方差是给定熵产率的单调递减函数。当存在时间尺度分离时,在有效平衡极限下,有效电位和温度的代价是相关的“隐藏”熵产率。
---
英文标题:
《Optimizing Energetic cost of Uncertainty in a Driven System With and
Without Feedback》
---
作者:
Amit Singh Vishen
---
最新提交年份:
2020
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics 物理学
二级分类:Biological Physics 生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
Many biological functions require the dynamics to be necessarily driven out-of-equilibrium. In contrast, in various contexts, a nonequilibrium dynamics at fast timescales can be described by an effective equilibrium dynamics at a slower timescale. In this work we study the two different aspects, (i) the energy-efficiency tradeoff for a specific nonequilibrium linear dynamics of two variables with feedback, and (ii) the cost of effective parameters in a coarse-grained theory as given by the "hidden" dissipation and entropy production rate in the effective equilibrium limit of the dynamics. To meaningfully discuss the tradeoff between energy consumption and the efficiency of the desired function, a one-to-one mapping between function(s) and energy input is required. The function considered in this work is the variance of one of the variables. We get a one-to-one mapping by considering the minimum variance obtained for a fixed entropy production rate and vice-versa. We find that this minimum achievable variance is a monotonically decreasing function of the given entropy production rate. When there is a timescale separation, in the effective equilibrium limit, the cost of the effective potential and temperature is the associated "hidden" entropy production rate.
---
PDF链接:
https://arxiv.org/pdf/1911.12363