英文标题:
《Marginal and dependence uncertainty: bounds, optimal transport, and
sharpness》
---
作者:
Daniel Bartl, Michael Kupper, Thibaut Lux, Antonis Papapantoleon,
Stephan Eckstein (appendix)
---
最新提交年份:
2018
---
英文摘要:
Motivated by applications in model-free finance and quantitative risk management, we consider Fr\\\'echet classes of multivariate distribution functions where additional information on the joint distribution is assumed, while uncertainty in the marginals is also possible. We derive optimal transport duality results for these Fr\\\'echet classes that extend previous results in the related literature. These proofs are based on representation results for increasing convex functionals and the explicit computation of the conjugates. We show that the dual transport problem admits an explicit solution for the function $f=1_B$, where $B$ is a rectangular subset of $\\mathbb R^d$, and provide an intuitive geometric interpretation of this result. The improved Fr\\\'echet--Hoeffding bounds provide ad-hoc upper bounds for these Fr\\\'echet classes. We show that the improved Fr\\\'echet--Hoeffding bounds are pointwise sharp for these classes in the presence of uncertainty in the marginals, while a counterexample yields that they are not pointwise sharp in the absence of uncertainty in the marginals, even in dimension 2. The latter result sheds new light on the improved Fr\\\'echet--Hoeffding bounds, since Tankov [30] has showed that, under certain conditions, these bounds are sharp in dimension 2.
---
中文摘要:
受无模型金融和定量风险管理应用的推动,我们考虑了一类多元分布函数,其中假设了关于联合分布的额外信息,同时也可能存在边际的不确定性。我们推导出这些Fr类的最优传输对偶结果,扩展了相关文献中的先前结果。这些证明基于增加凸泛函的表示结果和共轭的显式计算。我们证明了双输运问题允许函数$f=1\\u B$的显式解,其中$B$是$\\mathbb R ^ d$的矩形子集,并对该结果提供了直观的几何解释。改进的Fr\\echet-hoefffding界限为这些Fr\\echet类提供了特别的上界。我们表明,在边缘存在不确定性的情况下,这些类的改进的Frechet–Hoefffding界限是逐点尖锐的,而反例表明,在边缘不存在不确定性的情况下,即使在维度2,它们也不是逐点尖锐的。后一个结果为改进的Fr’echet-Hoefffding界限带来了新的曙光,因为Tankov[30]表明,在某些条件下,这些界限在维度2上是尖锐的。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->