摘要翻译:
我们研究了深度神经网络及其在半参数推理中的应用。我们建立了深层前馈神经网络的新的收敛速度。我们的新速率足够快(在某些情况下是极小极大最优的),允许我们在第一步估计后用深度学习建立有效的第二步推断,这是文献中的一个新结果。我们的估计率和半参数推断结果处理了当前的标准架构:全连接前向神经网络(多层感知器),具有现在常见的校正线性单元激活函数和随样本大小显式发散的深度。我们还讨论了其他架构,包括固定宽度、非常深的网络。对于一般的非参数回归型损失函数,包括最小二乘、logistic回归和其他广义线性模型,我们建立了这些深网的非渐近界。然后,我们应用我们的理论来发展半参数推理,侧重于具体的因果参数,如治疗效果、期望福利和分解效果。在许多其他半参数上下文中可以很容易地得到推论。我们通过蒙特卡罗分析和直接邮件营销的实证应用证明了
深度学习的有效性。
---
英文标题:
《Deep Neural Networks for Estimation and Inference》
---
作者:
Max H. Farrell and Tengyuan Liang and Sanjog Misra
---
最新提交年份:
2019
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We study deep neural networks and their use in semiparametric inference. We establish novel rates of convergence for deep feedforward neural nets. Our new rates are sufficiently fast (in some cases minimax optimal) to allow us to establish valid second-step inference after first-step estimation with deep learning, a result also new to the literature. Our estimation rates and semiparametric inference results handle the current standard architecture: fully connected feedforward neural networks (multi-layer perceptrons), with the now-common rectified linear unit activation function and a depth explicitly diverging with the sample size. We discuss other architectures as well, including fixed-width, very deep networks. We establish nonasymptotic bounds for these deep nets for a general class of nonparametric regression-type loss functions, which includes as special cases least squares, logistic regression, and other generalized linear models. We then apply our theory to develop semiparametric inference, focusing on causal parameters for concreteness, such as treatment effects, expected welfare, and decomposition effects. Inference in many other semiparametric contexts can be readily obtained. We demonstrate the effectiveness of deep learning with a Monte Carlo analysis and an empirical application to direct mail marketing.
---
PDF链接:
https://arxiv.org/pdf/1809.09953