全部版块 我的主页
论坛 经济学人 二区 外文文献专区
301 0
2022-03-07
摘要翻译:
本文证明了光滑复射影簇上平坦丛的Chern-Simons类,特别是Deligne Chern类(>1$)是扭转的Reznikov定理的推广。考虑了光滑拟射影簇在无穷远处具有不可约光滑因子的情形。定义了无穷远处具有单幂单数的平面向量丛的Deligne正则扩张的Chern-Simons类,它提升了Deligne Chern类,并证明了这些类是扭转的。
---
英文标题:
《Regulators of canonical extensions are torsion: the smooth divisor case》
---
作者:
Jaya N. Iyer (IMSC, Ias), Carlos T. Simpson (JAD)
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  In this paper, we prove a generalization of Reznikov's theorem which says that the Chern-Simons classes and in particular the Deligne Chern classes (in degrees $>1$) are torsion, of a flat bundle on a smooth complex projective variety. We consider the case of a smooth quasi--projective variety with an irreducible smooth divisor at infinity. We define the Chern-Simons classes of Deligne's canonical extension of a flat vector bundle with unipotent monodromy at infinity, which lift the Deligne Chern classes and prove that these classes are torsion.
---
PDF链接:
https://arxiv.org/pdf/0707.0372
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群