摘要翻译:
给出了非约化仿射代数群H的复射影簇X上的一个适当作用,讨论了如何选择含H的约化群G和GX_HX的一个射影完备,这是Math.AG/0703131意义上的约化包络。特别研究了加权射影平面P(1,1,2)上超曲面的模空间在P(1,1,2)的(非约简)自同构群的线性作用下作为商得到的例子族。
---
英文标题:
《Quotients by non-reductive algebraic group actions》
---
作者:
Frances Kirwan
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Given a suitable action on a complex projective variety X of a non-reductive affine algebraic group H, this paper considers how to choose a reductive group G containing H and a projective completion of G x_H X which is a reductive envelope in the sense of math.AG/0703131. In particular it studies the family of examples given by moduli spaces of hypersurfaces in the weighted projective plane P(1,1,2) obtained as quotients by linear actions of the (non-reductive) automorphism group of P(1,1,2).
---
PDF链接:
https://arxiv.org/pdf/0801.4607