摘要翻译:
生物医学研究中心可以通过利用来自实验和病人的大规模数据集来增强基础发现和新的治疗策略。这些数据,加上创建和分析这些数据的新技术,开创了一个数据驱动发现的时代,这需要超越传统的个人、单一学科的调查者研究模式。这个跨学科的利基是计算生物学蓬勃发展的地方。在过去的三十年里,它已经成熟,并为科学知识和人类健康做出了重大贡献,但该领域的研究人员经常在职业发展、出版和赠款审查方面苦苦挣扎。我们为个别科学家、机构、期刊出版商、资助机构和教育工作者提出解决方案。
---
英文标题:
《A field guide to cultivating computational biology》
---
作者:
Anne E Carpenter, Casey S Greene, Piero Carnici, Benilton S Carvalho,
Michiel de Hoon, Stacey Finley, Kim-Anh Le Cao, Jerry SH Lee, Luigi
Marchionni, Suzanne Sindi, Fabian J Theis, Gregory P Way, Jean YH Yang, Elana
J Fertig
---
最新提交年份:
2021
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Computer Science 计算机科学
二级分类:Computers and Society 计算机与社会
分类描述:Covers impact of computers on society, computer ethics, information technology and public policy, legal aspects of computing, computers and education. Roughly includes material in ACM Subject Classes K.0, K.2, K.3, K.4, K.5, and K.7.
涵盖计算机对社会的影响、计算机伦理、信息技术和公共政策、计算机的法律方面、计算机和教育。大致包括ACM学科类K.0、K.2、K.3、K.4、K.5和K.7中的材料。
--
---
英文摘要:
Biomedical research centers can empower basic discovery and novel therapeutic strategies by leveraging their large-scale datasets from experiments and patients. This data, together with new technologies to create and analyze it, has ushered in an era of data-driven discovery which requires moving beyond the traditional individual, single-discipline investigator research model. This interdisciplinary niche is where computational biology thrives. It has matured over the past three decades and made major contributions to scientific knowledge and human health, yet researchers in the field often languish in career advancement, publication, and grant review. We propose solutions for individual scientists, institutions, journal publishers, funding agencies, and educators.
---
PDF链接:
https://arxiv.org/pdf/2104.11364