摘要翻译:
在一维连续时间指数Levy模型中考虑终端财富的功率效用最大化问题。我们通过将投资组合调整限制在等距离散时间网格中来离散模型。在最小假设下,我们证明了最优离散时间策略收敛于连续时间策略。此外,我们给出并比较了离散时间和连续时间优化器的定性性质。
---
英文标题:
《Power Utility Maximization in Discrete-Time and Continuous-Time
Exponential Levy Models》
---
作者:
Johannes Temme
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
Consider power utility maximization of terminal wealth in a 1-dimensional continuous-time exponential Levy model with finite time horizon. We discretize the model by restricting portfolio adjustments to an equidistant discrete time grid. Under minimal assumptions we prove convergence of the optimal discrete-time strategies to the continuous-time counterpart. In addition, we provide and compare qualitative properties of the discrete-time and continuous-time optimizers.
---
PDF链接:
https://arxiv.org/pdf/1103.5575