摘要翻译:
我们证明了在多维Black-Scholes(BS)市场的多项式逼近序列中,美式期权的缺口风险收敛到具有路径依赖收益的多维BS市场中类似美式期权的相应数量。与以前的文献相比,我们考虑了多资产的情况,我们使用了弱收敛方法。
---
英文标题:
《Shortfall Risk Approximations for American Options in the
multidimensional Black--Scholes Model》
---
作者:
Yan Dolinsky
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
We show that shortfall risks of American options in a sequence of multinomial approximations of the multidimensional Black--Scholes (BS) market converge to the corresponding quantities for similar American options in the multidimensional BS market with path dependent payoffs. In comparison to previous papers we consider the multi assets case for which we use the weak convergence approach.
---
PDF链接:
https://arxiv.org/pdf/1004.1574