摘要翻译:
在系统发生树上寻找相似度和相异度的研究主要是由一致性树的计算、系统发生数据库中的相似性搜索以及生物信息学中聚类结果的评价等引起的。完全解析的系统发生树的转位距离是比较系统发生树的广泛可用度量的最新补充。本文通过将带有固定标记叶数的系统树集嵌入到对称群中的构造和对RNA接触结构Reidys-Stadler对合度量的推广,将完全分解的转置距离推广到任意系统树。我们还提出了简单的线性时间算法来计算它。
---
英文标题:
《The transposition distance for phylogenetic trees》
---
作者:
Francesc Rossello, Gabriel Valiente
---
最新提交年份:
2006
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Populations and Evolution 种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Mathematics 数学
二级分类:Group Theory 群论
分类描述:Finite groups, topological groups, representation theory, cohomology, classification and structure
有限群、拓扑群、表示论、上同调、分类与结构
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
The search for similarity and dissimilarity measures on phylogenetic trees has been motivated by the computation of consensus trees, the search by similarity in phylogenetic databases, and the assessment of clustering results in bioinformatics. The transposition distance for fully resolved phylogenetic trees is a recent addition to the extensive collection of available metrics for comparing phylogenetic trees. In this paper, we generalize the transposition distance from fully resolved to arbitrary phylogenetic trees, through a construction that involves an embedding of the set of phylogenetic trees with a fixed number of labeled leaves into a symmetric group and a generalization of Reidys-Stadler's involution metric for RNA contact structures. We also present simple linear-time algorithms for computing it.
---
PDF链接:
https://arxiv.org/pdf/q-bio/0604024