摘要翻译:
本文研究了具有L\'evy跳跃的L\'evy随机波动率模型,其形式为$Z=u+x$,其中$u=(Z_{t})_{t\geq0}$是经典随机波动率过程,$x=(X_{t})_{t\geq0}$是具有绝对连续L\'evy测度$\nu$的独立L\'evy过程。对于尾盘$\bbp(Z_{t}\geqz)$,$z>0$和看涨期权价格$\bbe(E_{z+Z_{t}}-1)_{+}$,$z\neq0$,在时间上得到了任意多项式阶的小时间展开式。对于光滑函数$\phi$和$z>0$,我们的方法允许统一处理形式为$\phi(x){\bf1}_{x\geq{}z}$的一般支付函数。作为尾展开式的结果,在温和的条件下,跃迁密度$f_{t}$的$t$中的多项式展开式也是{\green greated}。
---
英文标题:
《Small-time expansions of the distributions, densities, and option prices
of stochastic volatility models with L\'evy jumps》
---
作者:
J. E. Figueroa-L\'opez, R. Gong, and C. Houdr\'e
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We consider a stochastic volatility model with L\'evy jumps for a log-return process $Z=(Z_{t})_{t\geq 0}$ of the form $Z=U+X$, where $U=(U_{t})_{t\geq 0}$ is a classical stochastic volatility process and $X=(X_{t})_{t\geq 0}$ is an independent L\'evy process with absolutely continuous L\'evy measure $\nu$. Small-time expansions, of arbitrary polynomial order, in time-$t$, are obtained for the tails $\bbp(Z_{t}\geq z)$, $z>0$, and for the call-option prices $\bbe(e^{z+Z_{t}}-1)_{+}$, $z\neq 0$, assuming smoothness conditions on the {\PaleGrey density of $\nu$} away from the origin and a small-time large deviation principle on $U$. Our approach allows for a unified treatment of general payoff functions of the form $\phi(x){\bf 1}_{x\geq{}z}$ for smooth functions $\phi$ and $z>0$. As a consequence of our tail expansions, the polynomial expansions in $t$ of the transition densities $f_{t}$ are also {\Green obtained} under mild conditions.
---
PDF链接:
https://arxiv.org/pdf/1009.4211