英文标题:
《Volatility options in rough volatility models》
---
作者:
Blanka Horvath and Antoine Jacquier and Peter Tankov
---
最新提交年份:
2019
---
英文摘要:
We discuss the pricing and hedging of volatility options in some rough volatility models. First, we develop efficient Monte Carlo methods and asymptotic approximations for computing option prices and hedge ratios in models where log-volatility follows a Gaussian Volterra process. While providing a good fit for European options, these models are unable to reproduce the VIX option smile observed in the market, and are thus not suitable for VIX products. To accommodate these, we introduce the class of modulated Volterra processes, and show that they successfully capture the VIX smile.
---
中文摘要:
我们讨论了一些粗糙波动率模型中波动率期权的定价和套期保值。首先,我们开发了有效的蒙特卡罗方法和渐近近似方法,用于计算对数波动率遵循高斯-沃尔泰拉过程的模型中的期权价格和对冲比率。虽然这些模型很适合欧洲选项,但无法再现市场上观察到的VIX选项微笑,因此不适合VIX产品。为了适应这些情况,我们引入了一类调制Volterra过程,并证明它们成功捕获了VIX微笑。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->