摘要翻译:
对于正特性中的每一个变种,都有一系列规范定义的爆破,称为F爆破。我们感兴趣的问题是,$e+1$th爆炸是在本地还是在全球主导$e$th。证明了当给定的变种是F-纯的时,答案是肯定的(对于任意$E$)。作为推论,我们得到了F-爆破序列稳定性的一些结果。我们还给出了局部控制的一个充分条件。
---
英文标题:
《On monotonicity of F-blowup sequences》
---
作者:
Takehiko Yasuda
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
For each variety in positive characteristic, there is a series of canonically defined blowups, called F-blowups. We are interested in the question of whether the $e+1$-th blowup dominates the $e$-th, locally or globally. It is shown that the answer is affirmative (globally for any $e$) when the given variety is F-pure. As a corollary, we obtain some result on the stability of the sequence of F-blowups. We also give a sufficient condition for local domination.
---
PDF链接:
https://arxiv.org/pdf/0803.3373