摘要翻译:
设$X$是$\MathBB{P}^{4}$中的一个超曲面,其度为$D$,至多有孤立的普通双点。证明了当$x$最多有$(d-1)^{2}-1$奇点时,$x$是阶乘的。
---
英文标题:
《Factorial threefold hypersurfaces》
---
作者:
Ivan Cheltsov
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
Let $X$ be a hypersurface in $\mathbb{P}^{4}$ of degree $d$ that has at most isolated ordinary double points. We prove that $X$ is factorial in the case when $X$ has at most $(d-1)^{2}-1$ singular points.
---
PDF链接:
https://arxiv.org/pdf/0803.3301