摘要翻译:
研究了模空间,计算了具有内奇点集$2\bold{A}_8$或$\bold{A}_17}$的环面型平面性线的基本群。我们还计算了许多其它六性体的基本群,它们都是环面型的,也不是环面型的。所得到的群是最简单的,分别为$\BBB{Z}_2*\BBB{Z}_3$和$\BBB{Z}_6$。
---
英文标题:
《Fundamental groups of symmetric sextics. II》
---
作者:
Alex Degtyarev
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the moduli spaces and compute the fundamental groups of plane sextics of torus type with the set of inner singularities $2\bold{A}_8$ or $\bold{A}_{17}$. We also compute the fundamental groups of a number of other sextics, both of and not of torus type. The groups found are simplest possible, i.e., $\Bbb{Z}_2*\Bbb{Z}_3$ and $\Bbb{Z}_6$, respectively.
---
PDF链接:
https://arxiv.org/pdf/0805.2277