摘要翻译:
本文系统地研究了不同被动标量湍流模型和流体湍流模型中含时结构函数的动力学多尺度性。我们表明,通过适当地归一化这些结构函数,我们可以消除它们对我们开始测量的时间原点的依赖,并且这些归一化的结构函数产生了与统计定常湍流的动力学多尺度指数和等时间指数有关的相同的线性桥关系。对于被动标量湍流的Kraichnan模型及其shell模型,以及对于流体湍流的GOY shell模型和被动标量湍流的shell模型,我们用解析的方法证明了这些指数和桥关系对于统计定常和衰减湍流是相同的。因此,我们为动力学普适性提供了有力的证据,即动力学多标度指数不依赖于湍流是衰减还是统计定常。
---
英文标题:
《The Universality of Dynamic Multiscaling in Homogeneous, Isotropic
Turbulence》
---
作者:
Samriddhi Sankar Ray, Dhrubaditya Mitra and Rahul Pandit
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Chaotic Dynamics 混沌动力学
分类描述:Dynamical systems, chaos, quantum chaos, topological dynamics, cycle expansions, turbulence, propagation
动力系统,混沌,量子混沌,拓扑动力学,循环展开,湍流,传播
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Fluid Dynamics 流体动力学
分类描述:Turbulence, instabilities, incompressible/compressible flows, reacting flows. Aero/hydrodynamics, fluid-structure interactions, acoustics. Biological fluid dynamics, micro/nanofluidics, interfacial phenomena. Complex fluids, suspensions and granular flows, porous media flows. Geophysical flows, thermoconvective and stratified flows. Mathematical and computational methods for fluid dynamics, fluid flow models, experimental techniques.
湍流,不稳定性,不可压缩/可压缩流,反应流。气动/流体力学,流体-结构相互作用,声学。生物流体力学,微/纳米流体力学,界面现象。复杂流体,悬浮液和颗粒流,多孔介质流。地球物理流,热对流和层流。流体动力学的数学和计算方法,流体流动模型,实验技术。
--
---
英文摘要:
We systematise the study of dynamic multiscaling of time-dependent structure functions in different models of passive-scalar and fluid turbulence. We show that, by suitably normalising these structure functions, we can eliminate their dependence on the origin of time at which we start our measurements and that these normalised structure functions yield the same linear bridge relations that relate the dynamic-multiscaling and equal-time exponents for statistically steady turbulence. We show analytically, for both the Kraichnan Model of passive-scalar turbulence and its shell model analogue, and numerically, for the GOY shell model of fluid turbulence and a shell model for passive-scalar turbulence, that these exponents and bridge relations are the same for statistically steady and decaying turbulence. Thus we provide strong evidence for dynamic universality, i.e., dynamic-multiscaling exponents do not depend on whether the turbulence decays or is statistically steady.
---
PDF链接:
https://arxiv.org/pdf/710.5678