全部版块 我的主页
论坛 经济学人 二区 外文文献专区
400 0
2022-03-13
摘要翻译:
本文分析了一组智能体对一组复杂命题独立投票的判断聚合问题,这些命题之间存在某种相互依赖的约束(如描述偏好时的传递性)。我们从近似的角度考虑判断聚合的问题。即通过对近似判断集结的研究,推广了前人的结果。我们放宽了现有文献中假设的两个主要约束,一致性和独立性,并考虑了仅近似满足这些约束的机制,即满足它们的输入的一小部分。我们提出的主要问题是,这些概念的放松是否显著地改变了满足聚合机制的类别。Kalai、Mossel和Keller的偏好聚合的最新研究符合这个框架。本文的主要结果是,与偏好聚合的情形一样,在聚合问题的自然类中的一个子类“真值泛函议程”的情形中,满足聚合机制的集合在放松约束时并不是非平凡的扩展。我们的证明技术包括布尔傅立叶变换和投票协议的选民影响分析。我们对近似聚合提出的问题可以用属性测试来说明。例如,作为推论,我们得到了布尔函数线性性质检验的经典结果的推广。更新版本(repec:huj:dispap:dp574r)见http://www.ratio.huji.ac.il/dp_files/dp574r.pdf
---
英文标题:
《Approximate Judgement Aggregation》
---
作者:
Ilan Nehama
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--

---
英文摘要:
  In this paper we analyze judgement aggregation problems in which a group of agents independently votes on a set of complex propositions that has some interdependency constraint between them(e.g., transitivity when describing preferences). We consider the issue of judgement aggregation from the perspective of approximation. That is, we generalize the previous results by studying approximate judgement aggregation. We relax the main two constraints assumed in the current literature, Consistency and Independence and consider mechanisms that only approximately satisfy these constraints, that is, satisfy them up to a small portion of the inputs. The main question we raise is whether the relaxation of these notions significantly alters the class of satisfying aggregation mechanisms. The recent works for preference aggregation of Kalai, Mossel, and Keller fit into this framework. The main result of this paper is that, as in the case of preference aggregation, in the case of a subclass of a natural class of aggregation problems termed `truth-functional agendas', the set of satisfying aggregation mechanisms does not extend non-trivially when relaxing the constraints. Our proof techniques involve Boolean Fourier transform and analysis of voter influences for voting protocols. The question we raise for Approximate Aggregation can be stated in terms of Property Testing. For instance, as a corollary from our result we get a generalization of the classic result for property testing of linearity of Boolean functions.   An updated version (RePEc:huj:dispap:dp574R) is available at http://www.ratio.huji.ac.il/dp_files/dp574R.pdf
---
PDF链接:
https://arxiv.org/pdf/1008.3829
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群