摘要翻译:
在数学语言$\d$-模的翻译下,利用特征域$p>0$上的光滑真态射,证明了Berthelot关于在直象下保持过收敛的一个猜想。
---
英文标题:
《On the stability of the overconvergence under the direct image by a
proper smooth morphism》
---
作者:
Daniel Caro
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
Up to a translation in the language of arithmetic $\D$-modules, we prove a conjecture of Berthelot on the preservation of the overconvergence under the direct image by a smooth proper morphism of varieties over a perfect field of characteristic $p>0$.
---
PDF链接:
https://arxiv.org/pdf/0811.4740