摘要翻译:
设C是亏格G>1的光滑射影曲线,Clifford指数为C(C),设L是C上由其整体截面生成的线丛。态射I:C-->P(H^0(L))=P是很好定义的,I*T是射影空间P的切丛T对C的限制。通过对一个定理的拟然化,我们证明了如果deg L>2G-C(C)-1,则I*T是半稳定的,并说明了它何时也是稳定的。然后证明了2g-c(C)-1次线丛L在多条曲线上的存在性,使得I*T不是半稳定的。最后,我们完全刻划了当C为超椭圆时I*T的(半)稳定性。
---
英文标题:
《About the stability of the tangent bundle restricted to a curve》
---
作者:
Chiara Camere
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let C be a smooth projective curve with genus g>1 and Clifford index c(C) and let L be a line bundle on C generated by its global sections. The morphism i:C -->P(H^0(L))=P is well-defined and i*T is the restriction to C of the tangent bundle T of the projective space P. Sharpening a theorem by Paranjape, we show that if deg L>2g-c(C)-1 then i*T is semi-stable, specifying when it is also stable. We then prove the existence on many curves of a line bundle L of degree 2g-c(C)-1 such that i*T is not semi-stable. Finally, we completely characterize the (semi-)stability of i*T when C is hyperelliptic.
---
PDF链接:
https://arxiv.org/pdf/0712.0770