摘要翻译:
在本文中,我们将证明极化代数流形是k-稳定的,如果极化类允许常数标量曲率的Kaehler度量。这推广了陈田、Donaldson和Stoppa的结果。(部分论点基于即将发表的论文“更强的k-稳定性概念”。)
---
英文标题:
《K-stability of constant scalar curvature polarization》
---
作者:
Toshiki Mabuchi
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper, we shall show that a polarized algebraic manifold is K-stable if the polarization class admits a Kaehler metric of constant scalar curvature. This generalizes the results of Chen-Tian, Donaldson and Stoppa. (Parts of the arguments are based on a forthcoming paper "A stronger concept of K-stability." )
---
PDF链接:
https://arxiv.org/pdf/0812.4093