摘要翻译:
在Fine和Song-Tian的著作中,我们引入了一个上同调障碍来求解以半正形式扭转的常数标量曲率K\\Ahler(cscK)方程。这在几何上给出了一个障碍,使流形成为在某些绝热类中携带cscK度量的全纯淹没的基,从而产生了许多不允许cscK代表的一般三元数的新例子。当扭转消失时,我们的障碍将Ross-Thomas的斜率稳定性推广到K\\Ahler流形上的有效因子。因此,我们找到了非射影斜率不稳定流形的例子。
---
英文标题:
《Twisted cscK metrics and K\"ahler slope stability》
---
作者:
Jacopo Stoppa
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics        数学
二级分类:Differential Geometry        微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  We introduce a cohomological obstruction to solving the constant scalar curvature K\"ahler (cscK) equation twisted by a semipositive form, appearing in works of Fine and Song-Tian. Geometrically this gives an obstruction for a manifold to be the base of a holomorphic submersion carrying a cscK metric in certain ``adiabatic'' classes. In turn this produces many new examples of general type threefolds with classes which do not admit a cscK representative. When the twist vanishes our obstruction extends the slope stability of Ross-Thomas to effective divisors on a K\"ahler manifold. Thus we find examples of non-projective slope unstable manifolds. 
---
PDF链接:
https://arxiv.org/pdf/0804.0414