摘要翻译:
如果只考虑细胞膜的力学性质,可以简单地把细胞膜看作是由脂质双层、脂质双层下的膜骨架和包埋在脂质双层上并与膜骨架相连的蛋白质组成的复合材料。在本章中,作者首先简要介绍了继Helfrich关于脂质双层自发曲率能的开创性工作之后,在脂质双层力学性质方面的一些重要工作。其次,通过标度分析,得到了限制在曲面内的聚合物的熵和膜细胞骨架的自由能。发现细胞膜的自由能是面内应变能加Helfrich曲率能的形式。采用包含弹性自由能、表面张力能和渗透压项的总自由能的一级变化,得到了渗透压对细胞膜平衡形状和面内应变的描述方程。讨论了球形细胞膜的稳定性,发现其临界压力远大于无膜细胞骨架的球形脂质双层。最后,作者试图将现有的细胞膜静态力学模型推广到细胞结构动力学,提出了一组涉及细胞骨架张拉整体结构、细胞质流体动力学和细胞膜弹性的耦合方程。
---
英文标题:
《Elasticities and stabilities: lipid membranes vs cell membranes》
---
作者:
Z. C. Tu, R. An, and Z. C. Ou-Yang
---
最新提交年份:
2005
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Quantitative Biology 数量生物学
二级分类:Cell Behavior 细胞行为
分类描述:Cell-cell signaling and interaction; morphogenesis and development; apoptosis; bacterial conjugation; viral-host interaction; immunology
细胞-细胞信号传导及相互作用;形态发生和发育;细胞凋亡;细菌接合;病毒-宿主相互作用;免疫学
--
---
英文摘要:
A cell membrane can be simply regarded as composite material consisting of lipid bilayer, membrane cytoskeleton beneath lipid bilayer, and proteins embedded in lipid bilayer and linked with membrane cytoskeleton if one only concerns its mechanical properties. In this Chapter, above all, the authors give a brief introduction to some important work on mechanical properties of lipid bilayers following Helfrich's seminal work on spontaneous curvature energy of lipid bilayers. Next, the entropy of a polymer confined in a curved surface and the free energy of membrane cytoskeleton are obtained by scaling analysis. It is found that the free energy of cell membranes has the form of the in-plane strain energy plus Helfrich's curvature energy. The equations to describe equilibrium shapes and in-plane strains of cell membranes by osmotic pressures are obtained by taking the first order variation of the total free energy containing the elastic free energy, the surface tension energy and the term induced by osmotic pressure. The stability of spherical cell membrane is discussed and the critical pressure is found to be much larger than that of spherical lipid bilayer without membrane cytoskeleton. Lastly, the authors try to extend the present static mechanical model of cell membranes to the cell structure dynamics by proposing a group of coupling equations involving tensegrity architecture of cytoskeleton, fluid dynamics of cytoplasm and elasticities of cell membranes.
---
PDF链接:
https://arxiv.org/pdf/q-bio/0501001